Test for fatou.gp - Printable Version +- Tetration Forum (https://math.eretrandre.org/tetrationforum) +-- Forum: Tetration and Related Topics (https://math.eretrandre.org/tetrationforum/forumdisplay.php?fid=1) +--- Forum: Computation (https://math.eretrandre.org/tetrationforum/forumdisplay.php?fid=8) +--- Thread: Test for fatou.gp (/showthread.php?tid=1237) Test for fatou.gp - Ember Edison - 09/11/2019 fatou.gp implements Kneser's super-logarithm or inverse of tetration for complex bases and complex heights. Of course, We need some test to check behaviour of the program. All results download(2019v1, 2019-09-11 GMT 15:00) https://drive.google.com/drive/folders/1_r6bIGo6dLT8upkCi0u0m-HxaG1x087A?usp=sharing project for phase I: P1-1. Show the behaviour for sexp and slog when all parameter is complex. More results please click on the google drive link. Here are some pictures: P1-2. Find the ill-behaviour and bug for fatou.gp. https://math.eretrandre.org/tetrationforum/showthread.php?tid=1217 P1-3. Find the ill-behaviour and bug for superroot.gp. More results please click on the google drive link. Warning: I don't think I have a proper setup for superroot.gp project for phase II: P2-1. Verify the new features in 2019v1 edition fatou.gp.  It's more better in 2019v1 edition fatou.gp when circle closely around base zero. Add P2-3. New ill-region base: close to 1, close the Shell-Thron region, Abs(base)>10E6. P2-2. [b]Show the behaviour for pent, ipent, hex, ihex when all parameter is complex.[/b] (working) [b]P2-3. [b]Show the behaviour for [b]sexp and slog when circle closely around base zero.[/b][/b][/b] (working) (working) project for phase III: (planning) [b]P3-1. [b]Show the behaviour for [b]sexp and slog when circle closely around base 1.[/b][/b][/b] [b]P3-2. [b]Show the behaviour for [b]sexp and slog when base close the Shell-Thron region.[/b][/b][/b] Wishlist: W1. Holomorphic tetration to Base-0 It's looks mild when circle closely around base zero. W2. Holomorphic tetration to Base-1 W3. Holomorphic tetration to Base-Infty Upgrade from andydude work.  W4. Holomorphic super-root (and hyper-5-root, hyper-6-root) A trial version for super-root: https://math.eretrandre.org/tetrationforum/showthread.php?tid=1211&pid=8944#pid8944 RE: Test for fatou.gp - Ember Edison - 09/11/2019 More results with the ill-behaviour and bug for 2019v1 edition fatou.gp P2-1-1. The initialization code for All test base. Although all the initialization code is successful but not all can use sexp/slog. Code:```matrix_ir(-0.01,400,250,14/15,45/46) matrix_ir(-0.008,500,400,0.95,0.98) matrix_ir(-0.005,500,400,0.96,0.985) matrix_ir(-0.004,500,400,0.97,0.995) matrix_ir(-0.003,500,400,0.98,0.999) matrix_ir(-0.002+I*1E-30,600,250) matrix_ir(-0.001+I*1E-30,600,250) matrix_ir(-0.0009,600,250) matrix_ir(-0.0008,600,250) matrix_ir(-0.0005,600,250) matrix_ir(-0.0001,600,250) matrix_ir(-1E-5,600,250,14/15,45/46) matrix_ir(-1E-6,600,250,14/15,45/46) matrix_ir(-1E-7,600,250,14/15,45/46) matrix_ir(-1E-8,600,250,14/15,45/46) matrix_ir(-1E-9,600,250,14/15,45/46) matrix_ir(-1E-10,600,250,14/15,45/46) matrix_ir(-1E-15,600,250,0.9999,0.9999) matrix_ir(-1E-16+I*1E-46,600,250,0.99,0.99) matrix_ir(-1E-17,600,250,0.99,0.99) /* 1E-18 fail */ matrix_ir(1E-17*(-1)^(29/30),600,250,0.97,0.97) matrix_ir(1E-17*(-1)^(28/30),600,250,0.975,0.975) matrix_ir(1E-17*(-1)^(27/30),600,250,0.97,0.97) matrix_ir(1E-17*(-1)^(26/30),600,250,0.969,0.969) matrix_ir(1E-17*(-1)^(25/30),600,250,0.97,0.97) matrix_ir(1E-17*(-1)^(24/30),600,250,0.969,0.969) matrix_ir(1E-17*(-1)^(23/30),600,250,0.97,0.97) matrix_ir(1E-17*(-1)^(22/30),600,250,0.97,0.97) matrix_ir(1E-17*(-1)^(21/30),600,250,0.97,0.97) matrix_ir(1E-17*(-1)^(20/30),600,250,0.974,0.974) matrix_ir(1E-17*(-1)^(19/30),600,250,0.976,0.976) matrix_ir(1E-17*(-1)^(18/30),600,250,0.995,0.995) matrix_ir(1E-17*(-1)^(17/30)+I*1E-47,600,250,0.989,0.989) matrix_ir(1E-17*(-1)^(16/30),600,250,0.995,0.995) matrix_ir(1E-17*(-1)^(15/30),600,90,0.999,0.999) matrix_ir(1E-17*(-1)^(14/30),600,250,0.968,0.968) matrix_ir(1E-17*(-1)^(13/30),700,250,0.978,0.978) matrix_ir(1E-17*(-1)^(12/30),600,250,0.975,0.975) matrix_ir(1E-17*(-1)^(11/30),600,250,0.975,0.975) matrix_ir(1E-17*(-1)^(10/30),600,250,0.975,0.975) matrix_ir(1E-17*(-1)^(9/30)+I*1E-30,600,250,0.975,0.975) matrix_ir(1E-17*(-1)^(8/30),600,250,0.97,0.97) matrix_ir(1E-17*(-1)^(7/30),600,250,0.975,0.975) matrix_ir(1E-17*(-1)^(6/30),600,250,0.985,0.985) matrix_ir(1E-17*(-1)^(5/30),600,250,0.99,0.99) matrix_ir(1E-17*(-1)^(4/30),600,250,0.97,0.97) matrix_ir(1E-17*(-1)^(3/30),650,300,0.98,0.98) matrix_ir(1E-17*(-1)^(2/30)+I*1E-47,550,90,0.97,0.97) matrix_ir(1E-17*(-1)^(1/30)+I*1E-47,700,90,0.99,0.99) matrix_ir(1E-17+I*1E-47,600,250,0.99,0.99) matrix_ir(1E-16+I*1E-46,600,250,0.98,0.98) matrix_ir(1E-15+I*1E-45,600,250,0.975,0.975) matrix_ir(1E-10,600,250,14/15,45/46) matrix_ir(1E-9+I*1E-39,600,250,14/15,45/46) matrix_ir(1E-8+I*1E-38,600,250,14/15,45/46) matrix_ir(1E-7+I*1E-37,600,250,14/15,45/46) matrix_ir(1E-6+I*1E-36,600,250,14/15,45/46) matrix_ir(1E-5+I*1E-35,600,250,13/14,45/46) matrix_ir(0.0001,400,250) matrix_ir(0.0005,400,250) matrix_ir(0.001+I*1E-30,400,250) matrix_ir(0.005,400,250) matrix_ir(0.01+I*1E-30,400,250) matrix_ir(0.04,400,250) matrix_ir(0.05+I*1E-30,400,250) matrix_ir(0.06+I*1E-30,400,90,14/15,45/46) matrix_ir(0.07,600,600,0.99,0.999) matrix_ir(0.08,600,600,14/15,45/46) matrix_ir(0.1,600,600,14/15,45/46) matrix_ir(0.12+I*1E-30,400,90,14/15,45/46) matrix_ir(0.14,400,400,14/15,45/46) matrix_ir(0.16,400,400,14/15,45/46) matrix_ir(0.18,400,400,14/15,45/46) matrix_ir(0.2+I*1E-30,400,250) matrix_ir(0.22+I*1E-30,400,250) matrix_ir(0.24+I*1E-30,400,250) matrix_ir(0.26,400,250) matrix_ir(0.28,400,250) matrix_ir(0.3+I*1E-30,400,250) matrix_ir(0.32+I*1E-30,400,250) matrix_ir(0.34+I*1E-30,400,250) matrix_ir(0.36,400,250) matrix_ir(0.38,400,250) matrix_ir(0.4+I*1E-30,400,250) matrix_ir(0.42+I*1E-30,400,250) matrix_ir(0.44+I*1E-30,400,250) matrix_ir(0.46,400,250) matrix_ir(0.5+I*1E-30,400,250) matrix_ir(0.52+I*1E-30,400,250) matrix_ir(0.54,400,250) matrix_ir(0.56,400,250) matrix_ir(0.58+I*1E-30,400,250) matrix_ir(0.6+I*1E-30,400,250) matrix_ir(0.62,400,250) matrix_ir(0.7,400,250) matrix_ir(0.74+I*1E-30,400,250) matrix_ir(0.76,400,250) matrix_ir(0.78,400,250) matrix_ir(0.8,400,250) matrix_ir(0.82+I*1E-30,400,250) matrix_ir(0.84,400,250) matrix_ir(0.86,400,250) matrix_ir(0.88+I*1E-30,400,250) matrix_ir(0.9+I*1E-30,400,250) matrix_ir(0.92,400,250) matrix_ir(0.94+I*1E-30,400,250) matrix_ir(0.96+I*1E-30,400,250) matrix_ir(0.98,400,250) matrix_ir(0.99+I*1E-30,400,250) matrix_ir(0.999+I*1E-30,400,250) matrix_ir(1+1E-3*(-1)^(1/30),400,250) matrix_ir(1+1E-3*(-1)^(2/30),400,250) matrix_ir(1+1E-3*(-1)^(3/30),400,250) matrix_ir(1+1E-3*(-1)^(4/30),400,250) matrix_ir(1+1E-3*(-1)^(5/30),400,250,13/14,44/45) matrix_ir(1+1E-3*(-1)^(6/30),400,250,13/14,44/45) matrix_ir(1+1E-3*(-1)^(7/30),400,250,13/14,44/45) matrix_ir(1+1E-3*(-1)^(8/30),400,250,13/14,44/45) matrix_ir(1+1E-3*(-1)^(9/30),400,250) matrix_ir(1+1E-3*(-1)^(10/30),400,250) matrix_ir(1+1E-3*(-1)^(11/30),400,250) matrix_ir(1+1E-3*(-1)^(12/30),400,250) matrix_ir(1+1E-3*(-1)^(13/30),400,250) /* 14-29 fail */ matrix_ir(0.101+I*1E-30,400,250) matrix_ir(0.11+I*1E-30,400) matrix_ir(1.1,600,250) matrix_r(1.04) matrix_ir(etaB+1E-2,400,300) matrix_r(etaB+1E-3) matrix_r(etaB+1E-4) matrix_r(etaB+1E-5) matrix_r(etaB+1E-6) matrix_r(etaB+1E-7) matrix_r(etaB+1E-8) matrix_r(etaB+1E-9) matrix_r(etaB+1E-10) matrix_r(etaB+1E-11) matrix_r(etaB+1E-12) matrix_r(etaB+1E-13) matrix_r(etaB+1E-14) matrix_r(etaB+1E-15) matrix_r(etaB+1E-16) matrix_r(etaB+1E-17) matrix_r(etaB+1E-18) matrix_r(etaB+1E-19) matrix_r(etaB+(1E-19)*(-1)^(1/30)) matrix_r(etaB+(1E-19)*(-1)^(2/30)) matrix_r(etaB+(1E-19)*(-1)^(3/30)) matrix_r(etaB+(1E-19)*(-1)^(4/30)) matrix_r(etaB+(1E-19)*(-1)^(5/30)) matrix_r(etaB+(1E-19)*(-1)^(6/30)) matrix_r(etaB+(1E-19)*(-1)^(7/30)) matrix_r(etaB+(1E-19)*(-1)^(8/30)) matrix_r(etaB+(1E-19)*(-1)^(9/30)) matrix_r(etaB+(1E-19)*(-1)^(10/30)) /* 11-14 fail */ matrix_r(etaB+(1E-19)*(-1)^(15/30)) /* 16-20 fail */ matrix_r(etaB+(1E-19)*(-1)^(21/30)) matrix_r(etaB+(1E-19)*(-1)^(22/30)) matrix_r(etaB+(1E-19)*(-1)^(23/30)) matrix_r(etaB+(1E-19)*(-1)^(24/30)) matrix_r(etaB+(1E-19)*(-1)^(25/30)) matrix_r(etaB+(1E-19)*(-1)^(26/30)) matrix_r(etaB+(1E-19)*(-1)^(27/30)) matrix_r(etaB+(1E-19)*(-1)^(28/30)) matrix_r(etaB+(1E-19)*(-1)^(29/30)) matrix_r(etaB-1E-19) matrix_r(etaB-1E-18) matrix_r(etaB-1E-17) matrix_r(etaB-1E-16) matrix_r(etaB-1E-15) matrix_r(etaB-1E-14) matrix_r(etaB-1E-13) matrix_r(etaB-1E-12) matrix_r(etaB-1E-11) matrix_r(etaB-1E-10) matrix_r(etaB-1E-9) matrix_r(etaB-1E-8) matrix_r(etaB-1E-7) matrix_r(etaB-1E-6) matrix_r(etaB-1E-5) matrix_r(etaB-1E-4) matrix_r(etaB-1E-3) matrix_ir(etaB-1E-2,400,300) matrix_ir(1E-5*(-1)^(29/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(28/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(27/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(26/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(25/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(24/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(23/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(22/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(21/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(20/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(19/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(18/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(17/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(16/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(15/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(14/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(13/30),700,250,13/14,44/45) matrix_ir(1E-5*(-1)^(12/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(11/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(10/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(9/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(8/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(7/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(6/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(5/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(4/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(3/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(2/30),600,250,13/14,44/45) matrix_ir(1E-5*(-1)^(1/30),600,250,13/14,44/45) matrix_ir(1E6,,,19/20) matrix_ir(1E7,,,19/20) matrix_ir(1E8+I*1E-30,,,19/20) matrix_ir(1E9+I*1E-30,,,19/20) matrix_ir(1E10+I*1E-30,,,19/20) matrix_ir(1E11+I*1E-30,,,19/20)``` P2-1-2. Why have the line in 0