[2014] Uniqueness of periodic superfunction - Printable Version +- Tetration Forum (https://math.eretrandre.org/tetrationforum) +-- Forum: Tetration and Related Topics (https://math.eretrandre.org/tetrationforum/forumdisplay.php?fid=1) +--- Forum: Mathematical and General Discussion (https://math.eretrandre.org/tetrationforum/forumdisplay.php?fid=3) +--- Thread: [2014] Uniqueness of periodic superfunction (/showthread.php?tid=933) [2014] Uniqueness of periodic superfunction - tommy1729 - 11/09/2014 Let $F(z)$ be a periodic superfunction of a real-entire $f(z)$. If $f(z)$ has no parabolic fixpoints and $f(z)$ has exactly $n$ pairs of $(z_i,z_j)$ where $z_i$ is a repelling fixpoint and $z_j$ is an attracting fixpoint , then there are at most $n$ solutions $F(z)$. This relates to http://math.eretrandre.org/tetrationforum/showthread.php?tid=932 and http://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02342-2/home.html and http://math.eretrandre.org/tetrationforum/showthread.php?tid=89 Regards tommy1729