• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 2015 Continuum sum conjecture tommy1729 Ultimate Fellow Posts: 1,370 Threads: 335 Joined: Feb 2009 05/25/2015, 11:29 PM I noticed a possible pattern. $\sum_{k=0}^{z-1} e^{nk} = \frac{e^{nz} - 1}{e^{n} - 1}$ next $\sum_{k=0}^{z-1} e^{e^k} = \sum_{k=0}^{z-1} f(k) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{k=0}^{z-1} e^{nk}\right) = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{k=0}^{z-1} e^{nk} = \sum_{n=0}^{\infty} \frac{e^{nz} - 1}{n! \left(e^{n} - 1\right)}$ next define : $e^{e^{e^x}} = \sum_{n=0}^{\infty} a_n e^{nx}$ then \begin{align}\sum_{n=0}^{x-1} e^{e^{e^n}} &= a_0 x + \sum_{n=1}^{\infty} \frac{a_n}{e^{n} - 1} \left(e^{nx} - 1\right) \\ &= \left(a_0 - \sum_{n=1}^{\infty} \frac{a_n}{e^{n} - 1}\right) x + \sum_{n=1}^{\infty} \frac{a_n}{e^{n} - 1} e^{nx}\end{align} Now it appears The continuum sum up to z-1 of exp^[n](x) is given by CS [ exp^[n](x) , z-1] = P_n(x) + F_n(x) where F_n is 2pi i periodic and P_n is a polynomial of degree (at most) n. I guess there is a simple reason for it. Right ?? What if n is not an integer ? say n = 3/2 ? Does that imply P_{3/2}(x) =< O( x^{3/2} ) ?? regards tommy1729 « Next Oldest | Next Newest »

 Messages In This Thread 2015 Continuum sum conjecture - by tommy1729 - 05/25/2015, 11:29 PM RE: 2015 Continuum sum conjecture - by tommy1729 - 05/26/2015, 12:10 PM RE: 2015 Continuum sum conjecture - by tommy1729 - 05/26/2015, 12:18 PM RE: 2015 Continuum sum conjecture - by tommy1729 - 05/26/2015, 12:24 PM

 Possibly Related Threads... Thread Author Replies Views Last Post @Gottfried : answer to your conjecture on MSE. tommy1729 2 2,865 02/05/2017, 09:38 PM Last Post: Gottfried Polygon cyclic fixpoint conjecture tommy1729 1 2,327 05/18/2016, 12:26 PM Last Post: tommy1729 [2015] Spiderweb theory tommy1729 0 1,926 03/29/2015, 06:25 PM Last Post: tommy1729 [2015] 4th Zeration from base change pentation tommy1729 5 6,179 03/29/2015, 05:47 PM Last Post: tommy1729 [2015] s(exp(d(x))) = x + 2 tommy1729 1 2,311 03/26/2015, 05:35 PM Last Post: tommy1729 Conjecture on semi-exp base change [2015] tommy1729 0 1,831 03/24/2015, 03:14 PM Last Post: tommy1729 [2015] New zeration and matrix log ? tommy1729 1 3,348 03/24/2015, 07:07 AM Last Post: marraco 2 fixpoint pairs [2015] tommy1729 0 1,867 02/18/2015, 11:29 PM Last Post: tommy1729 Tommy's conjecture : every positive integer is the sum of at most 8 pentatope numbers tommy1729 0 2,231 08/17/2014, 09:01 PM Last Post: tommy1729 Another way to continuum sum! JmsNxn 6 6,804 06/06/2014, 05:09 PM Last Post: MphLee

Users browsing this thread: 1 Guest(s)