Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Messages In This Thread
Tommy triangles - by tommy1729 - 11/04/2015, 12:40 AM
RE: Tommy triangles - by tommy1729 - 11/04/2015, 01:17 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 2,657 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 1,782 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 1,987 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 6,580 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 1,727 10/09/2015, 07:39 AM
Last Post: tommy1729
  Tommy's hyperlog tommy1729 0 1,795 06/11/2015, 08:23 AM
Last Post: tommy1729
Sad Tommy-Mandelbrot function tommy1729 0 2,067 04/21/2015, 01:02 PM
Last Post: tommy1729
  tommy equation tommy1729 3 4,144 03/18/2015, 08:52 AM
Last Post: sheldonison
  Kouznetsov-Tommy-Cauchy method tommy1729 0 2,130 02/18/2015, 07:05 PM
Last Post: tommy1729
  [Collatz] Tommy's collatz lemma tommy1729 0 1,891 09/11/2014, 08:48 AM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)