Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Messages In This Thread
Tommy triangles - by tommy1729 - 11/04/2015, 12:40 AM
RE: Tommy triangles - by tommy1729 - 11/04/2015, 01:17 PM

Possibly Related Threads…
Thread Author Replies Views Last Post
  semi-group homomorphism and tommy's U-tetration tommy1729 2 30 08/01/2022, 11:15 PM
Last Post: JmsNxn
  " tommy quaternion " tommy1729 30 8,144 07/04/2022, 10:58 PM
Last Post: Catullus
  Tommy's Gaussian method. tommy1729 34 9,166 06/28/2022, 02:23 PM
Last Post: tommy1729
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 117 06/22/2022, 11:49 PM
Last Post: tommy1729
  tommy beta method tommy1729 0 595 12/09/2021, 11:48 PM
Last Post: tommy1729
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 1,227 09/20/2021, 04:29 AM
Last Post: JmsNxn
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 5,659 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 3,729 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 3,855 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 13,715 11/07/2015, 01:02 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)