• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Superroots and a generalization for the Lambert-W andydude Long Time Fellow Posts: 509 Threads: 44 Joined: Aug 2007 11/13/2015, 05:58 PM I'm not sure if this should be in a different thread, but I just found a website with programming puzzles, and one of the puzzles is super-roots: http://www.checkio.org/mission/super-root/ this "mission" (programming puzzle) has a very large number of "solutions" (Python implementations) of super-roots. After you login and solve the mission, it will show you other people's solutions along with your own. I solved it using the infinite tetrate (x^x^x^...) which is probably not the fastest method, but I think it's more beautiful than using Newton's method with an unknown number of iterations until you find the right number. Most of the solutions are based on Newton's method or a similar bisection method, but I was considering going thru them to see if there's any new methods we didn't know about... « Next Oldest | Next Newest »

 Messages In This Thread Superroots and a generalization for the Lambert-W - by Gottfried - 11/09/2015, 01:17 PM RE: Superroots and a generalization for the Lambert-W - by nuninho1980 - 11/09/2015, 11:27 PM RE: Superroots and a generalization for the Lambert-W - by Gottfried - 11/10/2015, 12:06 PM RE: Superroots and a generalization for the Lambert-W - by tommy1729 - 11/10/2015, 09:38 AM RE: Superroots and a generalization for the Lambert-W - by Gottfried - 11/10/2015, 12:04 PM RE: Superroots and a generalization for the Lambert-W - by tommy1729 - 11/10/2015, 11:19 PM RE: Superroots and a generalization for the Lambert-W - by andydude - 11/13/2015, 05:58 PM RE: Superroots and a generalization for the Lambert-W - by Gottfried - 11/13/2015, 07:05 PM RE: Superroots and a generalization for the Lambert-W - by Gottfried - 11/16/2015, 01:08 AM RE: Superroots and a generalization for the Lambert-W - by andydude - 11/21/2015, 05:05 AM RE: Superroots and a generalization for the Lambert-W - by andydude - 11/22/2015, 08:12 PM RE: Superroots and a generalization for the Lambert-W - by andydude - 11/24/2015, 12:51 AM RE: Superroots and a generalization for the Lambert-W - by Gottfried - 11/24/2015, 02:56 AM RE: Superroots and a generalization for the Lambert-W - by andydude - 11/24/2015, 07:16 AM RE: Superroots and a generalization for the Lambert-W - by andydude - 11/24/2015, 07:00 AM RE: Superroots and a generalization for the Lambert-W - by Gottfried - 12/01/2015, 03:13 PM RE: Superroots and a generalization for the Lambert-W - by tommy1729 - 12/01/2015, 11:58 PM RE: Superroots and a generalization for the Lambert-W - by Gottfried - 12/02/2015, 03:49 AM RE: Superroots and a generalization for the Lambert-W - by tommy1729 - 12/02/2015, 01:22 PM RE: Superroots and a generalization for the Lambert-W - by andydude - 12/02/2015, 12:48 AM RE: Superroots and a generalization for the Lambert-W - by Gottfried - 12/02/2015, 02:43 AM RE: Superroots and a generalization for the Lambert-W - by andydude - 12/09/2015, 06:34 AM RE: Superroots and a generalization for the Lambert-W - by andydude - 12/30/2015, 09:49 AM

 Possibly Related Threads... Thread Author Replies Views Last Post Superroots (formal powerseries) Gottfried 10 14,555 04/05/2011, 03:22 AM Last Post: Stan Infinite towers & solutions to Lambert W-function brangelito 1 4,106 06/16/2010, 02:50 PM Last Post: bo198214 Lambert W function and the Super Square Root James Knight 3 9,591 10/29/2009, 06:30 AM Last Post: andydude the extent of generalization Matt D 11 13,051 10/15/2007, 04:52 PM Last Post: Matt D

Users browsing this thread: 1 Guest(s)