• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 (almost) proof of TPID 13 fivexthethird Junior Fellow Posts: 9 Threads: 3 Joined: Nov 2013 05/06/2016, 11:50 AM Actually, the statement I'm proving is more general: Theorem: Let $f(z)$ be holomorphic and bounded on the right half-plane $\Re(z) > c$ for some $c < 0$. Then $f(x)$ is equal to its newton series starting at 0 on that half-plane, We need the following very simple lemma: Lemma: Let $\mathcal{M}\{f(x)\}(s) = \int_1^\infty x^{s-1}f(x) dx + \sum_{n=0}^\infty \frac{f^{(n)}(0)}{n! (n+s)}$ be the analytic continuation of the mellin transform. Then $\mathcal{M}\{\sum_{k=0}^\infty f_k(x) \}(s) = \sum_{k=0}^\infty \mathcal{M}\{f_k(x)\}(s)$ if 1. The sum is absolutely convergent for all x 2. The $f_k$ are all holomorphic. 3. The derivative of the sum at 0 is equal to its term-wise derivative at 0 Proof: The sum and the integral are trivially interchanged. The other term is just $\sum_{n=0}^{\infty} \sum_{k=0}^\infty \frac{f_k^{(n)}(0)}{n!(n+s)}$ The inner sum is clearly absolutely convergent, so we can interchange the sums. Then we can add the two sums of the transform term-wise to get the result. A more general result is most likely well-known but I haven't found any proof of it. Now, $f$ satisfies the conditions for Ramanujan's master theorem to hold, so we have : $f(s) = \mathcal{M}\{\frac{1}{\Gamma(-s)} \sum_{k=0}^{\infty} (-x)^k \frac{f(k)}{k!}\}(-s) [tex] = \mathcal{M}\{\frac{e^{-x}}{\Gamma(-s)} \sum_{k=0}^{\infty} (-x)^k \frac{\Delta^k f(0)}{k!}\}(-s)$ $=\sum_{k=0}^{\infty} \frac{\mathcal{M}\{e^{-x}(-x)^k\}(-s)}{\Gamma(-s)} \frac{\Delta^k f(0)}{ k!} =\sum_{k=0}^{\infty} \frac{(-1)^k \Gamma(k-s)}{\Gamma(-s) } \frac{\Delta^k f(0)}{k!}$ $=\sum_{k=0}^{\infty} (s)_k\frac{\Delta^k f(0)}{k!}$ As the Mellin transform will converge when $\Re(s) > c$, the result follows. Of course, this isn't quite what TPID 13 actually wants: this proves convergence of the newton series of $n^{\frac{1}{n}}$ starting at every $n>0$, but not starting at the desired $n=0$. « Next Oldest | Next Newest »

 Messages In This Thread (almost) proof of TPID 13 - by fivexthethird - 05/06/2016, 11:50 AM RE: (almost) proof of TPID 13 - by JmsNxn - 05/06/2016, 04:12 PM

 Possibly Related Threads... Thread Author Replies Views Last Post Where is the proof of a generalized integral for integer heights? Chenjesu 2 1,878 03/03/2019, 08:55 AM Last Post: Chenjesu Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 2,022 09/06/2016, 04:23 PM Last Post: tommy1729 Flexible etas and eulers ? TPID 10 tommy1729 0 1,801 08/19/2016, 12:09 PM Last Post: tommy1729 TPID 4 tommy1729 29 31,315 07/07/2014, 11:56 PM Last Post: tommy1729 introducing TPID 16 tommy1729 4 6,233 06/18/2014, 11:46 PM Last Post: tommy1729 Proof Ackermann function extended to reals cannot be commutative/associative JmsNxn 1 3,607 06/15/2013, 08:02 PM Last Post: MphLee Proof Ackermann function cannot have an analytic identity function JmsNxn 0 2,781 11/11/2011, 02:26 AM Last Post: JmsNxn TPID 8 tommy1729 0 2,246 04/04/2011, 10:45 PM Last Post: tommy1729 Discussion of TPID 6 JJacquelin 3 7,145 10/24/2010, 07:44 AM Last Post: bo198214 Another proof of TPID 6 tommy1729 0 2,456 07/25/2010, 11:51 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)