tommy's simple solution ln^[n](2sinh^[n+x](z))
#1
Consider f(z,x) = Lim(n --> oo)  ln^[n] ( 2sinh^[n+x] (z) ).

This simple Function satisfies exp(f(z,x)) = f(z,x+1).

So we have a simple superfunction that requires only the real iterations of 2sinh(z).

Notice lim ( n --> oo) 2sinh^[n]( 2^(z-n)) is a superf for 2sinh.

f(z,x) could be analytic for re(z) > 1.

Also , is it really new ?

Or is it the ( analytic continuation ? ) of the 2sinh method ?
It sure is very similar.

----

Mick wondered if F^[n] ( g^[n] ) is analytic for f = sqrt and g = x^2 +1.

---

Regards

Tommy1729
Reply


Messages In This Thread
tommy's simple solution ln^[n](2sinh^[n+x](z)) - by tommy1729 - 01/16/2017, 01:29 PM

Possibly Related Threads…
Thread Author Replies Views Last Post
  [MSE too] more thoughts on 2sinh tommy1729 1 73 02/26/2023, 08:49 PM
Last Post: tommy1729
  [NT] Caleb stuff , mick's MSE and tommy's diary functions tommy1729 0 59 02/26/2023, 08:37 PM
Last Post: tommy1729
  " tommy quaternion " tommy1729 37 11,357 02/14/2023, 11:47 PM
Last Post: tommy1729
  tommy's "linear" summability method tommy1729 15 504 02/10/2023, 03:55 AM
Last Post: JmsNxn
  Maybe the solution at z=0 to f(f(z))=-z+z^2 Leo.W 9 328 01/24/2023, 12:37 AM
Last Post: tommy1729
  Semi-group iso , tommy's limit fix method and alternative limit for 2sinh method tommy1729 1 240 12/30/2022, 11:27 PM
Last Post: tommy1729
  tommy's group addition isomo conjecture tommy1729 1 367 09/16/2022, 12:25 PM
Last Post: tommy1729
  tommy's displacement equation tommy1729 1 368 09/16/2022, 12:24 PM
Last Post: tommy1729
  semi-group homomorphism and tommy's U-tetration tommy1729 5 692 08/12/2022, 08:14 PM
Last Post: tommy1729
Question The Etas and Euler Numbers of the 2Sinh Method Catullus 2 556 07/18/2022, 10:01 AM
Last Post: Catullus



Users browsing this thread: 1 Guest(s)