Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Inspired by the sqrt
#1
Two ideas are at play here

1) approximate f^[1/2](z) by a^[1/2](z) + b^[1/2](z) when f(z) = a(z) + b(z).

2) q(  q x ^ s )^s = q^{s+1} x^(s^2).

So when we try this to approximate 2sinh^[1/2](x), what do we get ?

G(x) = 0 + A1 x + A2 x^sqrt 2 + A3 x^sqrt 3 + ...

Need to think about that.

sent it mick From MSE too , so it might appear there.

Regards

Tommy1729
Reply


Messages In This Thread
Inspired by the sqrt - by tommy1729 - 02/13/2017, 01:11 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  tetration base sqrt(e) tommy1729 2 3,156 02/14/2015, 12:36 AM
Last Post: tommy1729
  [2014] sqrt boundary tommy1729 0 1,687 06/19/2014, 08:03 PM
Last Post: tommy1729
  Crazy conjecture connecting the sqrt(e) and tetrations! rsgerard 7 11,930 03/27/2014, 11:20 PM
Last Post: tommy1729
  regular tetration base sqrt(2) : an interesting(?) constant 2.76432104 Gottfried 7 8,621 06/25/2013, 01:37 PM
Last Post: sheldonison
  regular iteration of sqrt(2)^x (was: eta as branchpoint of tetrational) JmsNxn 5 7,181 06/15/2011, 12:27 PM
Last Post: Gottfried
  inspired by an equation tommy1729 0 2,341 07/27/2010, 11:18 PM
Last Post: tommy1729
  Regular slog for base sqrt(2) - Using z=2 jaydfox 13 17,391 03/10/2010, 12:47 PM
Last Post: Gottfried
  sqrt(!) and sqrt(exp) Kouznetsov 3 4,945 08/05/2009, 08:30 AM
Last Post: Kouznetsov



Users browsing this thread: 1 Guest(s)