• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Merged fixpoints of 2 iterates ? Asymptotic ? [2019] sheldonison Long Time Fellow Posts: 664 Threads: 23 Joined: Oct 2008 09/10/2019, 11:28 AM (This post was last modified: 09/11/2019, 07:37 AM by sheldonison.) (09/09/2019, 11:29 PM)tommy1729 Wrote: Consider the function f(z) = exp(z) + z. f(z) has no finite fixpoints. We do iterates ( fractional near the real line ) by moving the fixpoint at oo to a finite place.  ... Now i wonder if we take the half- iterates of f^[2] from those 2 fixpoints ( A and B ) based on koenigs solutions Iterating $z\mapsto \exp(z)+z$ is congruent to iterating $y \mapsto y{e^y};\;\;\;y=e^z$ Then we use the method of Ecalle to generate the Abel function for the parabolic fixed point of $y=y{e^y}$ at y=0, which corresponds to the fixed point at $z=-\infty$.  The two periodic fixed points correspond to $y=\pm\pi i$ Then iterating y is the inverse of iterating the lambert-w function; so that is well defined too.  The problem of using the pair of two-periodic fixed points to generate a real valued soution requires something much much more complicated than just Koenigs; probably the Op has in mind something more like Kneser's method of using a complex conjugate pair of repelling fixed points?    Quote:Similar questions for the merged fixpoints of g(z,t) = (z^2 + t) + z  I have implemented iterating $g(z)=z^2+z+t;\;\;z\mapsto g(z);\;\;g^{[\circ z]}$ where $\Re(t)>0$, using both complex conjugate fixed points in a method analogous to Kneser's solution for tetration.  In complex dynamics, this Abel function is the perturbed fatou coordinate.  This implementation is actually one of the dozen or so things included in my program fatou.gp by using the parameter x2mode=1. Code:\r fatou.gp x2mode=1; loop(0.5);  /* this is my value for k; equal to the Op's "t"; works for k<=0.68; crashes for k>0.69 */ abel(5);    /*  3.33194722643578               */ invabel(4); /* 14.7851562500000; invabel(0)=0  */ - Sheldon « Next Oldest | Next Newest »

 Messages In This Thread Merged fixpoints of 2 iterates ? Asymptotic ? [2019] - by tommy1729 - 09/09/2019, 11:29 PM RE: Merged fixpoints of 2 iterates ? Asymptotic ? [2019] - by sheldonison - 09/10/2019, 11:28 AM

 Possibly Related Threads... Thread Author Replies Views Last Post Using a family of asymptotic tetration functions... JmsNxn 13 790 05/10/2021, 02:26 AM Last Post: JmsNxn A Holomorphic Function Asymptotic to Tetration JmsNxn 2 372 03/24/2021, 09:58 PM Last Post: JmsNxn An asymptotic expansion for \phi JmsNxn 1 449 02/08/2021, 12:25 AM Last Post: JmsNxn Half-iterates and periodic stuff , my mod method [2019] tommy1729 0 1,621 09/09/2019, 10:55 PM Last Post: tommy1729 Approximation to half-iterate by high indexed natural iterates (base on ShlThrb) Gottfried 1 2,371 09/09/2019, 10:50 PM Last Post: tommy1729 Searching for an asymptotic to exp[0.5] tommy1729 191 296,118 03/15/2018, 01:23 PM Last Post: tommy1729 b^b^x with base 0 method of iteration series tommy1729 0 2,871 12/21/2016, 01:27 PM Last Post: tommy1729 2 fixpoints related by power ? tommy1729 0 2,571 12/07/2016, 01:29 PM Last Post: tommy1729 2 real fixpoints again ....... tommy1729 10 16,128 02/23/2016, 10:17 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)