• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 An asymptotic expansion for \phi JmsNxn Long Time Fellow Posts: 571 Threads: 95 Joined: Dec 2010 02/08/2021, 12:25 AM ACK, So this result is only true if $\phi(t+\pi i) / t \to -1$. The correct statement without this is, $ \psi_m(t,x) = \Omega_{j=1}^m e^{t-j-x}\bullet x\\$ Then, $ \psi_m(t+m,h_m(t)) = t+m\\$ Where since $h_m\to\infty$ we really can say much, unless $|h_m(t-m)|< M$ is bounded fixed $t$ and $m>0$. Which, is doubtful. So damn close. « Next Oldest | Next Newest »

 Messages In This Thread An asymptotic expansion for \phi - by JmsNxn - 02/06/2021, 03:18 AM RE: An asymptotic expansion for \phi - by JmsNxn - 02/08/2021, 12:25 AM

 Possibly Related Threads... Thread Author Replies Views Last Post Searching for an asymptotic to exp[0.5] tommy1729 201 350,380 12/12/2021, 10:02 PM Last Post: tommy1729 Using a family of asymptotic tetration functions... JmsNxn 15 4,639 08/06/2021, 01:47 AM Last Post: JmsNxn Reducing beta tetration to an asymptotic series, and a pull back JmsNxn 2 895 07/22/2021, 03:37 AM Last Post: JmsNxn A Holomorphic Function Asymptotic to Tetration JmsNxn 2 1,338 03/24/2021, 09:58 PM Last Post: JmsNxn Merged fixpoints of 2 iterates ? Asymptotic ? [2019] tommy1729 1 3,561 09/10/2019, 11:28 AM Last Post: sheldonison Another asymptotic development, similar to 2sinh method JmsNxn 0 4,101 07/05/2011, 06:34 PM Last Post: JmsNxn weird series expansion tommy1729 2 6,982 07/05/2010, 07:59 PM Last Post: tommy1729 matrix function like iteration without power series expansion bo198214 15 33,412 07/14/2008, 09:55 PM Last Post: bo198214 Woon's expansion bo198214 3 9,091 09/07/2007, 03:13 PM Last Post: bo198214

Users browsing this thread: 1 Guest(s)