Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Kneser's Super Logarithm
#2
As mentioned in the title of his paper Kneser originally seeks for an analytic solution of the functional equation (This functional equation was considerably discussed at the conference of the German mathematician's association, October 1941 in Jena. So there the idea was born to construct an analytic solution.)

As is very well-known the construction of a half-iterate can be reduced to the solution of the Abel equation, which Kneser gives here in a bit more generality:
.

If one has such a solution then it is easy to construct the half iterate by:

because then


Closely related to the Abel equation is the Schroeder equation:

If one has a solution of the Schroeder equation, then is a solution of the Abel equation with , because:


And one can also derive the fractional iterates directly from the Schroeder function by:
.

The good thing is now that for holomorphic functions with fixed point and there is always the so called principal Schroeder function (holomorphic in a vicinity of ) which satisfies the Schroeder equation for and which satisfies .


There are two possibilities to construct this principal Schroeder function. First by development of the powerseries in and chosing the coefficients of such that they satisfy the Schroeder equation.
And second by the limit


As you can easily verify if is a solution of the Schroeder equation then is also a solution for any constant . They are called "regular" (by Szekeres) if is the principal Schroeder function.
Those regular solutions are characterized by that is holomorphic in .

As a first step Kneser computes this principal Schroeder function of at 's first fixed point in the upper half plane, the fixed point nearest to the real axis. is however not real on the real axis, so he determines some mapping properties of and later manipulates to become real and analytic on the real axis.
Reply


Messages In This Thread
Kneser's Super Logarithm - by bo198214 - 11/19/2008, 02:20 PM
RE: Kneser's Super Logarithm - by bo198214 - 11/19/2008, 03:25 PM
RE: Kneser's Super Logarithm - by sheldonison - 01/23/2010, 01:01 PM
RE: Kneser's Super Logarithm - by mike3 - 01/25/2010, 06:35 AM
RE: Kneser's Super Logarithm - by sheldonison - 01/25/2010, 07:42 AM
RE: Kneser's Super Logarithm - by mike3 - 01/26/2010, 06:24 AM
RE: Kneser's Super Logarithm - by sheldonison - 01/26/2010, 01:22 PM
RE: Kneser's Super Logarithm - by mike3 - 01/27/2010, 06:28 PM
RE: Kneser's Super Logarithm - by sheldonison - 01/27/2010, 08:30 PM
RE: Kneser's Super Logarithm - by mike3 - 01/28/2010, 08:52 PM
RE: Kneser's Super Logarithm - by sheldonison - 01/28/2010, 10:08 PM
RE: Kneser's Super Logarithm - by mike3 - 01/29/2010, 06:43 AM
RE: Kneser's Super Logarithm - by bo198214 - 01/26/2010, 11:19 PM
RE: Kneser's Super Logarithm - by sheldonison - 01/27/2010, 07:51 PM
RE: Kneser's Super Logarithm - by bo198214 - 11/22/2008, 06:11 PM
RE: Kneser's Super Logarithm - by bo198214 - 11/23/2008, 01:00 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Is bugs or features for fatou.gp super-logarithm? Ember Edison 10 841 08/07/2019, 02:44 AM
Last Post: Ember Edison
  A fundamental flaw of an operator who's super operator is addition JmsNxn 4 6,068 06/23/2019, 08:19 PM
Last Post: Chenjesu
  Can we get the holomorphic super-root and super-logarithm function? Ember Edison 10 1,291 06/10/2019, 04:29 AM
Last Post: Ember Edison
  Inverse super-composition Xorter 11 11,219 05/26/2018, 12:00 AM
Last Post: Xorter
  The super 0th root and a new rule of tetration? Xorter 4 3,198 11/29/2017, 11:53 AM
Last Post: Xorter
  Solving tetration using differintegrals and super-roots JmsNxn 0 1,668 08/22/2016, 10:07 PM
Last Post: JmsNxn
  The super of exp(z)(z^2 + 1) + z. tommy1729 1 2,274 03/15/2016, 01:02 PM
Last Post: tommy1729
  Super-root 3 andydude 10 9,578 01/19/2016, 03:14 AM
Last Post: andydude
  [split] Understanding Kneser Riemann method andydude 7 6,958 01/13/2016, 10:58 PM
Last Post: sheldonison
  super of exp + 2pi i ? tommy1729 1 3,098 08/18/2013, 09:20 PM
Last Post: tommy1729



Users browsing this thread: 2 Guest(s)