• 1 Vote(s) - 5 Average
• 1
• 2
• 3
• 4
• 5
 Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... Gottfried Ultimate Fellow     Posts: 789 Threads: 121 Joined: Aug 2007 10/20/2017, 08:32 PM (This post was last modified: 10/20/2017, 10:16 PM by Gottfried.) Ah, so I assumed well.     Ok, here is the solution for the upper fixpoint: Code:fz2=x^2+(1+sqrt(3))*x       \\ using upper fixpoint   F = mkCarleman ( polcoeffs(fz2,32) )  \\ carleman matrix of size 32x32 (power series will have 32 coeffs) F_eigen = tri_eigen(F) ; Ser(F_Eigen[,2])+O(x^6)   \\ inverse Schröder funktion at upper fixpoint  ----------------- %82 = x + 0.2113248654*x^2 + 0.0239322565748*x^3 + 0.00174634543176*x^4 + 0.00009103437192*x^5 + O(x^6)Added: here are some basic Pari/GP procedures used so far: Code:{ polcoeffs(lp, flgd=-2, flgNoConst=0) = local(llp, lpd, lv, lv1, maxd, oldps, s);       maxd=if(flgd==-1|flgd==-2,n,flgd);             oldps=default(seriesprecision,,1);  \\ save old series-precision and adjust for current query             s=default(seriesprecision,maxd,1);       llp=Pol(lp);lpd=poldegree(llp);    \\ convert input into formal POL             s=default(seriesprecision,oldps,1);  \\ reset old series precision       if(flgd==-2,maxd=max(0,lpd+1));       lv=vector(maxd);            for(k=0,min(lpd,maxd-1),lv[1+k]=polcoeff(llp,k));       if(flgNoConst,lv=0);      \\ make a true ZERO if constant should vanish       return(lv); } \\ polcoeffs(lp, flgd=-2,flgNoConst=0) : uses a scalar entry containing a \\ polynomial, converts it into a vector of coefficients (calling implicitely "polcoeff()") \\ flgd=-2: return poldegree+1 coefficients \\ flgd=-1: return default (=n) coefficients \\ flgd>=0: return flgd coefficients. { mkCarleman(lvec, serprec=n) = local(dim=length(lvec), tmpv, tmpser, tmpM, oldserprec);               oldserprec=default(seriesprecision,,1);               if(serprec<>oldserprec,default(seriesprecision,serprec,1));      tmpv = Ser(lvec);      tmpser = tmpv + O(x^dim);      tmpM = matid(dim);         for(c=2,dim,              tmpM[,c]=polcoeffs(tmpser,dim)~ ;              tmpser = tmpser*tmpv  + O(x^dim)            );      if(serprec<>oldserprec,default(seriesprecision,oldserprec,1));      return(tmpM); } \\ mkCarleman (vector-of-coefficients, seriesprecision = n) \\ creates from a vector of coefficients (assumed to be of the power series of some function f(x)) \\ a matrix of the Carleman-type (transposed to the wikipedia-convention \\ serprec : if dimension should other than order of supplied polynomial, give it in "serprec" { tri_eigen(U, dim=9999, numfmt=1) = local(u=U[2,2], UEW, UEWi, t=exp(u), uv);        dim=max(1,min(rows(U),dim));        uv=vectorv(dim,r,U[r,r]);        UEW=numfmt*matid(dim);  \\ is also the Carlemanmatrix for Schröder-function            for(c=1,dim-1,                 for(r=c+1,dim,                       UEW[r,c]=sum(k=c,r-1,U[r,k]*UEW[k,c])/(uv[c]-uv[r])               ));        UEWi=numfmt*matid(dim); \\ UEWi shall become the inverse of UEW, is also the                                       \\ Carleman-matrix of the inverse Schröder-function        for(r=2,dim,             forstep(c=r-1,1,-1,                  UEWi[r,c]=sum(k=0,r-1-c,U[r-k,c]*UEWi[r,r-k])/(uv[r]-uv[c])            ));        return([[u,t,exp(u/t)],UEW,uv,UEWi]);} \\ tri_eigen(U, dim=9999, numfmt=1) - performs diagonalization of lower triangular matrices \\ if inputmatrix is of Carlemantype, then the Eigenmatrices are of the Carlemantype as well \\ returns vector of [coeffs, M, D, M^-1] M being eigenvectors, D being diagonalmatrix of eigenvalues \\                                        coeffs being [u=log(t), t, u/t = log(b)] where b=t^(1/t) \\    diagonalization can also be performed if input matrix is Carleman and has parameter u only symbolic \\ \\ dim : if 9999 use size of input matrix \\     : if smaller use size of top-left sumbatrix \\ \\ numfmt : 1 : return integer values if possible ; sometimes faster, sometimes slower than with real values \\          1.0 : compute in float format (with stadard-precision in Pari/GP). If large factorials \\                occur in large dimension matrices Ut then using numfmt=1.0 prevents gigantic integers \\                or rational numbers with gigantic components. { fmt(realprec=-1, dispdigits=-1, flg=1) = local(oldp, oldf);      oldp=precision(0.0);      oldf=default(format,,1);      if(realprec>-1,default(realprecision,realprec,1);oldp=realprec);      if(dispdigits>-1,oldf=Str("g0.",dispdigits));      oldf=default(format,oldf,1);      if(flg,print("prec=",oldp," display=",oldf)); } \\ fmt(200,12) sets Pari/GP real precision to 200 and display digits to 12 \\ if only one parameter should be changed, the other stays untouched. fmt(,8) ; fmt(400) etc \\ additional remarks: \\  I use the global variable "n" for default size for matrices and vectors. (This is "n" \\  simply I'm an old statistician... ) \\  By default, I set in my session-initialization n=32 . With this size all standard \\  matrix-constants are also precomputed to be permanently available in the session. \\  If "n" should be changed either then the session-initialization should \\  be recalled so the matrix-constants are recomputed too (if they are needed at all). \\ \\  I've implemented the short routine "fmt(internal-precision,display-precision)" and \\  initialize sessions with "fmt(200,12)" to have by default 200 dec digits precision for \\  real-arithmetic. This can be changed at any time, but remember that possibly used \\  real constant (like bases for exponentiation, computed fixpoints etc) should then \\  recomputed as well. \\ \\  The full set of routines for my (dynamical) matrix-toolbox-procedures is too large \\  to be added here, I might send it on personal request.Gottfried Gottfried Helms, Kassel « Next Oldest | Next Newest »

 Messages In This Thread Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 03/02/2009, 02:50 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 03/02/2009, 04:48 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by bo198214 - 03/02/2009, 04:50 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by tommy1729 - 03/02/2009, 08:48 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 03/03/2009, 12:52 AM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 03/03/2009, 07:45 AM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 03/03/2009, 12:15 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by tommy1729 - 06/05/2011, 01:45 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 06/05/2011, 05:17 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by tommy1729 - 06/02/2011, 08:36 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 06/04/2011, 10:01 AM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 06/04/2011, 01:13 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by tommy1729 - 06/04/2011, 09:43 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 06/05/2011, 10:50 AM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 06/05/2011, 11:40 AM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by tommy1729 - 06/06/2011, 11:01 AM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 06/06/2011, 12:47 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 10/19/2017, 10:38 AM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by sheldonison - 10/19/2017, 04:50 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 10/19/2017, 09:33 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by sheldonison - 10/20/2017, 06:00 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 10/20/2017, 07:55 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by sheldonison - 10/20/2017, 08:19 PM RE: Iteration exercises: f(x)=x^2 - 0.5 ; Fixpoint-irritation... - by Gottfried - 10/20/2017, 08:32 PM

 Possibly Related Threads... Thread Author Replies Views Last Post (Again) fixpoint outside Period tommy1729 2 5,583 02/05/2017, 09:42 AM Last Post: tommy1729 Polygon cyclic fixpoint conjecture tommy1729 1 4,580 05/18/2016, 12:26 PM Last Post: tommy1729 The " outside " fixpoint ? tommy1729 0 2,949 03/18/2016, 01:16 PM Last Post: tommy1729 2 fixpoint pairs  tommy1729 0 3,292 02/18/2015, 11:29 PM Last Post: tommy1729  The secondary fixpoint issue. tommy1729 2 6,492 06/15/2014, 08:17 PM Last Post: tommy1729 Simple method for half iterate NOT based on a fixpoint. tommy1729 2 6,456 04/30/2013, 09:33 PM Last Post: tommy1729 Iteration exercises: Lucas-Lehmer-test and Schröder-function Gottfried 0 4,056 04/04/2012, 06:17 AM Last Post: Gottfried Iteration series: Different fixpoints and iteration series (of an example polynomial) Gottfried 0 4,601 09/04/2011, 05:59 AM Last Post: Gottfried Fractional iteration of x^2+1 at infinity and fractional iteration of exp bo198214 10 26,805 06/09/2011, 05:56 AM Last Post: bo198214 2 fixpoint failure tommy1729 1 4,811 11/13/2010, 12:25 AM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)