• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 exp(x) - 1 Base-Acid Tetration Fellow   Posts: 94 Threads: 15 Joined: Apr 2009 05/15/2009, 02:32 AM (This post was last modified: 05/15/2009, 02:35 AM by Base-Acid Tetration.) (05/14/2009, 11:48 PM)tommy1729 Wrote: we know exp(x)-1 has a fixed point. which leads to unique half-iterate and a somewhat unique superfunction. so we might want to use the fixpoint of exp(x) - 1 for a ' surrogate fixpoint ' of exp(x). here is how - if i dont blunder - : using superfunction F(x) : F(x + 1) = exp [ F(x) ] - 1. now the simple but brilliant idea - if correct - F( x + 1 ) + 1 = exp [ F(x) ] generalize to F ( x + a ) + a = exp exp exp ... a times [ F(x) ] and Coo tetration follows !!? ok, if you add one to the argument multiple times it gets complicated: f(x+1)=exp(f(x))-1 f(x+2)=exp(exp(f(x)-1)-1= exp(e^f(x)/e)-1 ≠ exp(exp(f))-2, f(x+3)=exp(exp(exp(f(x)-1)-1)-1= e^(e^[f(x)]/e)= so f(x+1)+1 can't quite be generalized to f(x+a)+a. « Next Oldest | Next Newest »

 Messages In This Thread exp(x) - 1 - by tommy1729 - 05/14/2009, 11:48 PM RE: exp(x) - 1 - by Base-Acid Tetration - 05/15/2009, 02:32 AM

Users browsing this thread: 1 Guest(s) 