Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Cheta with base-change: preliminary results
#20
I also just see that there is a function lagrange_polynomial in sage
e.g.
# using the definition of Lagrange interpolation polynomial
sage: R = PolynomialRing(QQ, 'x')
sage: R.lagrange_polynomial([(0,1),(2,2),(3,-2),(-4,9)])

I mean this should be super easy now. Just plug in your argument-value-pairs and you have the interpolating polynomial (no matrix fuzz).
Then you can apply this interpolating polynomial to non-real values.
Or extract the coefficients as you like.
However I didnt check how long it takes Smile
For variants see
http://wiki.sagemath.org/sage-4.0.1
Reply


Messages In This Thread



Users browsing this thread: 1 Guest(s)