• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Superroots (formal powerseries) Gottfried Ultimate Fellow Posts: 764 Threads: 118 Joined: Aug 2007 10/25/2009, 12:09 PM (This post was last modified: 10/25/2009, 12:10 PM by Gottfried.) Recently I found Andrew's remark in "designing a tetration library", that the superrots were not yet well developed. Facts on superroots seem to be spread over various threads; so to have some collection under an expressive title I've put together some details, tending to compile more information from time to time as they appear. (@admin: maybe that msg is better located in some related thread, for instance the tetration library thread) Ok, I've put the text in plain text and am lazy to MimeTex it today, perhaps I'll rework it next days. ====================================================================== A short collection concerning superroots ====================================================================== Starting point is the nice powerseries for Code:`´ g(x) = (1+x)^(1+x) - 1` Using the exponential-/logarithm-series for this we write first Code:`´  g(x) = exp( log(1+x)*(1+x)) - 1` and get Code:```´ g(x)   =   1*x + 1*x^2 + 1/2*x^3 + 1/3*x^4 + 1/12*x^5 + 3/40*x^6            - 1/120*x^7 + 59/2520*x^8 - 71/5040*x^9 + 131/10080*x^10            - 53/5040*x^11 + O(x^12)``` This series has the nice property, that the constant term vanishes and also, that the linear term has coefficient 1, so g(0)=0 and g'(0)=1, so we can do some common operations with it: inversion, iteration, ... getting exact coefficients. Now we define higher orders by something like chaining, which is not exactly iteration of g(). The sequence of functions Code:```´    g(x,1) = (1+x)-1      g(x,2) = (1+x)^(1+x) - 1      g(x,3) = (1+x)^(1+x)^(1+x) - 1      ...   = ...``` gives similarly nice shaped powerseries, for instance Code:```´    g(x,3) = (1+x)^(1+x)^(1+x)  -1           =  1*x + 1*x^2 + 3/2*x^3 + 4/3*x^4 + 3/2*x^5 + 53/40*x^6            + 233/180*x^7 + 5627/5040*x^8 + 2501/2520*x^9 + 8399/10080*x^10            + 34871/50400*x^11 + O(x^12)``` From this it is easy to define a sequence of functions for exponentialtowers of integer heights: Code:`´  f(x,h) = g(x-1,h) + 1  = x^x^x^...^x    // h-occurences of x` Note, that this is in principle all well known and is merely a restatement of known results. The unusual aspect with that sequence of powerseries is, that the leading coefficients stabilize when the height increases, and thus we have a "strange" behave when the height increases to infinity. Example: we get the following table of coefficients (where the rows contain the coefficients for one height and each column is associated with one power of x): Code:```´ 0    1    0    0       0     0       0          0             0          ...   0    1    1    1/2    1/3    1/12   3/40      -1/120        59/2520      ...   0    1    1    3/2    4/3    3/2   53/40     233/180      5627/5040      ...   0    1    1    3/2    7/3    3    163/40    1861/360     33641/5040      ...   0    1    1    3/2    7/3    4    243/40    3421/360     71861/5040      ...   0    1    1    3/2    7/3    4    283/40    4321/360    102941/5040      ...   0    1    1    3/2    7/3    4    283/40    4681/360    118061/5040      ...   0    1    1    3/2    7/3    4    283/40    4681/360    123101/5040      ...      ...``` where the first column (containing zeros) represent the placeholders for the nonexistent constant terms. (The first row was appended to get a meaningfully interpretation for the "once"-iterate; it represents just g(x,1) = (1+x) -1 . The limit case for h->inf begins with the same coefficients as the last row of the table above) ------------------------------------------------------------------ Inversion Since the g(x,h)-series have no constant term but a linear term with unit-coefficent, we can invert each of that g-series. Expressed by the appropriate f-function we get the superroot-powerseries for each integer height. Let's denote the inverse functions as gi() and fi(), then for gi(x,2) we get Code:```´ gi(x,2) = x - x^2 + 3/2*x^3 - 17/6*x^4 + 37/6*x^5 - 1759/120*x^6             + 13279/360*x^7 - 97283/1008*x^8 + 654583/2520*x^9 - 10800299/15120*x^10             + 75519317/37800*x^11 + O(x^12)``` and a higher h, for instance Code:```´ gi(x,12) = x - x^2 + 1/2*x^3 + 1/6*x^4 - 3/4*x^5 + 131/120*x^6            - 9/8*x^7 + 1087/1260*x^8 - 271/720*x^9 - 2291/10080*x^10             + 523/630*x^11  + O(x^12)``` which again stabilizes for h->inf Code:```Table of coefficients for gi(x,h), h=1.. ------------------------------------------------------------------------------------   0  1   0    0      0      0          0          0            0            0   ...   0  1  -1  3/2  -17/6   37/6  -1759/120  13279/360  -97283/1008  654583/2520   ...   0  1  -1  1/2    7/6  -17/4    821/120     -25/12  -56269/2520    52079/720   ...   0  1  -1  1/2    1/6    1/4   -349/120     161/24    -2642/315       677/72   ...   0  1  -1  1/2    1/6   -3/4    251/120      -45/8   13897/1260   -10891/720   ...   0  1  -1  1/2    1/6   -3/4    131/120       -1/8   -5213/1260     8909/720   ...   0  1  -1  1/2    1/6   -3/4    131/120       -9/8    2347/1260    -4231/720   ...   0  1  -1  1/2    1/6   -3/4    131/120       -9/8    1087/1260      449/720   ...   0  1  -1  1/2    1/6   -3/4    131/120       -9/8    1087/1260     -271/720   ...   0  1  -1  1/2    1/6   -3/4    131/120       -9/8    1087/1260     -271/720   ...   .... -----------------------------------------------------------------------------------``` ====================================================================== The h'th superroot ====================================================================== The shown powerseries, formally seen, give the functons for the h'th superroots: Code:```´ fi(x^x,2)   = x    = gi(x^x-1,2)+1   fi(x^x^x,3) = x   ...                         fi(x^^h,h)  = x``` and the computation of the h'th superroot can be implemented by calls of the gi(x,h)-function: Code:`´ ssrt(x,h) = fi(x,h) = gi(x-1,h) + 1` This gives, if convergent, the base b, which must be exponentiated h times to equal the given value x. ----------------------------------------------------------------------- Convergence: Concerning the range of convergence I don't have an idea yet. For instance for g(x,2) we can guess a rate of decrease similar to µ/k^2 where k is the index and µ some constant, so we should have a range of convergence for |x|<=1 only. For f(x,2) consequently we had then 0=k this poses a new challenge for the interpolation to fractional heights. I have currently no idea how to proceed here... ----------------------------------------------------------------------- (should be continued) Gottfried Gottfried Helms, Kassel « Next Oldest | Next Newest »

 Messages In This Thread Superroots (formal powerseries) - by Gottfried - 10/25/2009, 12:09 PM RE: Superroots (formal powerseries) - by andydude - 10/26/2009, 01:50 AM RE: Superroots (formal powerseries) - by Gottfried - 10/26/2009, 02:02 PM Superroot: List of relevant msg's/threads - by Gottfried - 10/26/2009, 02:13 PM RE: Superroots (formal powerseries) - by robo37 - 10/28/2009, 09:20 AM RE: Superroots (formal powerseries) - by Gottfried - 10/28/2009, 10:19 PM Superroots article "WexZal" - by Gottfried - 10/29/2009, 05:56 AM RE: Superroots article "WexZal" - by bo198214 - 10/29/2009, 12:08 PM RE: Superroots article "WexZal" - by Gottfried - 10/29/2009, 01:55 PM RE: Superroots article "WexZal" - by bo198214 - 10/29/2009, 10:10 PM RE: Superroots (formal powerseries) - by Stan - 04/05/2011, 03:22 AM

 Possibly Related Threads... Thread Author Replies Views Last Post Superroots and a generalization for the Lambert-W Gottfried 22 19,022 12/30/2015, 09:49 AM Last Post: andydude Divergent Sums in Polar form of odd/even term Formal Powerseries Ivars 0 2,804 06/21/2008, 02:24 PM Last Post: Ivars

Users browsing this thread: 1 Guest(s)