Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Numerical algorithm for Fourier continuum sum tetration theory
#3
Code:
(13:19) gp > vt = ConvToFourier(vector(3, i, 1))
%11 = [0.E-29 + 3.365806530 E-29*I, 1.000000000000000000000000000 + 0.E-29*I, 1.
051814540 E-29 + 2.524354897 E-29*I]
(13:19) gp > vt = NormTetIter(128*I, 2., vt)
%12 = [-0.7725460236329082906309061030 - 9.19165959 E-28*I, 0.769145726068130203
5432582902 - 5.202826184 E-28*I, 1.003400297564778087087647813 + 1.456791331 E-2
7*I]
(13:19) gp > TetApprox(PP, vt, 2., 0.5)
  *** exp: negative exponent in gexp.

therefore, is this variable "x" integer only?
Reply


Messages In This Thread
RE: Numerical algorithm for Fourier continuum sum tetration theory - by nuninho1980 - 09/15/2010, 01:28 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  fast accurate Kneser sexp algorithm sheldonison 38 78,239 01/14/2016, 05:05 AM
Last Post: sheldonison
  Attempt to make own implementation of "Kneser" algorithm: trouble mike3 9 16,418 06/16/2011, 11:48 AM
Last Post: mike3
  Road testing Ansus' continuum product formula mike3 33 35,755 09/23/2009, 08:26 PM
Last Post: mike3
  Software for numerical calculation ala qbasic Ivars 3 5,935 02/22/2008, 04:40 PM
Last Post: Ivars
  numerical examples for approximation for half-iterates for exp(x)-1 Gottfried 0 2,721 08/14/2007, 11:57 AM
Last Post: Gottfried



Users browsing this thread: 1 Guest(s)