Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Precision check on [pentation.gp] SOLVED
#1
Code:
? init(exp(Pi()/2));loop
   base          4.81047738096535165547304
   fixed point   0.E-68 + 1.00000000000000000000000*I
   Pseudo Period 3.69464335841375533580710 + 1.06216001044294092389502*I
4 strm(s) out of 12 sexp(z) generates 36 Riemann samples, scnt= 43
8 rtrm(s) out of 18 riemaprx(z) generates 12 sexp samples
sexp(-0.5)= 0.44150846390775332819992735716755
6.315800093 Riemann/sexp binary precision bits I=0.1200000000*I
1=loopcount -0.005257090997 recenter/renorm 0.005021271902
18 strm(s) out of 18 sexp(z) generates 26 Riemann samples, scnt= 36
12 rtrm(s) out of 13 riemaprx(z) generates 19 sexp samples
sexp(-0.5)= 0.44146829736572151824153868728668
15.39341456 Riemann/sexp binary precision bits I=0.1200000000*I
2=loopcount -0.000006612199794 recenter/renorm 0.00001187700815
22 strm(s) out of 28 sexp(z) generates 38 Riemann samples, scnt= 50
19 rtrm(s) out of 19 riemaprx(z) generates 22 sexp samples
sexp(-0.5)= 0.44146826345089157095194288166600
23.36284166 Riemann/sexp binary precision bits I=0.1200000000*I
3=loopcount -0.00000002312286847 recenter/renorm 0.00000007284067824
33 strm(s) out of 33 sexp(z) generates 50 Riemann samples, scnt= 62
25 rtrm(s) out of 25 riemaprx(z) generates 29 sexp samples
sexp(-0.5)= 0.44146826265404109196819015909251
31.45371224 Riemann/sexp binary precision bits I=0.1200000000*I
4=loopcount -1.197253818 E-10 recenter/renorm 1.162183490 E-10
40 strm(s) out of 43 sexp(z) generates 64 Riemann samples, scnt= 75
32 rtrm(s) out of 32 riemaprx(z) generates 30 sexp samples
sexp(-0.5)= 0.44146826265346684519672624211813
39.80570360 Riemann/sexp binary precision bits I=0.1200000000*I
5=loopcount -3.150872206 E-13 recenter/renorm 7.227756425 E-13
45 strm(s) out of 45 sexp(z) generates 80 Riemann samples, scnt= 88
40 rtrm(s) out of 40 riemaprx(z) generates 35 sexp samples
sexp(-0.5)= 0.44146826265345961129724099420262
48.14861781 Riemann/sexp binary precision bits I=0.1200000000*I
6=loopcount -1.151385006 E-15 recenter/renorm 1.259558322 E-15
52 strm(s) out of 52 sexp(z) generates 94 Riemann samples, scnt= 100
47 rtrm(s) out of 47 riemaprx(z) generates 38 sexp samples
sexp(-0.5)= 0.44146826265345960793409283844758
56.61697584 Riemann/sexp binary precision bits I=0.1200000000*I
7=loopcount -2.738837756 E-18 recenter/renorm 6.799954147 E-18
57 strm(s) out of 57 sexp(z) generates 110 Riemann samples, scnt= 113
55 rtrm(s) out of 55 riemaprx(z) generates 42 sexp samples
sexp(-0.5)= 0.44146826265345960787456889962878
65.05123526 Riemann/sexp binary precision bits I=0.1200000000*I
8=loopcount -7.703853099 E-21 recenter/renorm 1.516819744 E-20
63 strm(s) out of 63 sexp(z) generates 124 Riemann samples, scnt= 126
62 rtrm(s) out of 62 riemaprx(z) generates 46 sexp samples
sexp(-0.5)= 0.44146826265345960787455655053558
73.11307204 Riemann/sexp binary precision bits I=0.1200000000*I
9=loopcount -2.263257063 E-23 recenter/renorm 8.389515433 E-23
69 strm(s) out of 69 sexp(z) generates 138 Riemann samples, scnt= 139
69 rtrm(s) out of 69 riemaprx(z) generates 49 sexp samples
sexp(-0.5)= 0.44146826265345960787455568662140
81.22151804 Riemann/sexp binary precision bits I=0.1200000000*I
10=loopcount -1.148962259 E-25 recenter/renorm 1.542482215 E-25
73 strm(s) out of 73 sexp(z) generates 154 Riemann samples, scnt= 151
77 rtrm(s) out of 77 riemaprx(z) generates 52 sexp samples
sexp(-0.5)= 0.44146826265345960787455568616458
89.35146101 Riemann/sexp binary precision bits I=0.1200000000*I
11=loopcount -2.948891538 E-28 recenter/renorm 1.148593582 E-27
78 strm(s) out of 78 sexp(z) generates 168 Riemann samples, scnt= 164
84 rtrm(s) out of 84 riemaprx(z) generates 56 sexp samples
sexp(-0.5)= 0.44146826265345960787455568615250
92.04321478 Riemann/sexp binary precision bits I=0.1200000000*I
12=loopcount 2.894810870 E-29 recenter/renorm 2.344784572 E-28
84 strm(s) out of 84 sexp(z) generates 172 Riemann samples, scnt= 168
86 rtrm(s) out of 86 riemaprx(z) generates 56 sexp samples
sexp(-0.5)= 0.44146826265345960787455568615249
92.01407805 Riemann/sexp binary precision bits I=0.1200000000*I
13=loopcount 3.046137094 E-29 recenter/renorm 2.376219052 E-28
UNEXPECTED LOSS: curprecision<lastprecision. EXITING 92.014078053342056762222450521195
From the [pentation.gp] code, http://math.eretrandre.org/tetrationforu...372&page=2

I ran through the loops for <sexp> of base ~4.81 and somehow, the indeterminacy of the 13th loop exceeded that of the 12th loop. Is there a way to solve this issue without changing the base? I'm not exactly certain about the possible consequences of this, other than the likely limit of precision... is a result like this 'normal' for larger bases?
Reply


Messages In This Thread
Precision check on [pentation.gp] SOLVED - by Cherrina_Pixie - 06/28/2011, 07:17 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Attempt to find a limit point but each step needs doubling the precision... Gottfried 15 31,832 11/09/2014, 10:25 PM
Last Post: tommy1729
  Expansion of base-e pentation andydude 13 37,836 07/02/2011, 01:40 AM
Last Post: Cherrina_Pixie
  How to force precision in SAGE? jaydfox 2 7,636 08/18/2007, 11:08 PM
Last Post: jaydfox



Users browsing this thread: 1 Guest(s)