• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Precision check on [pentation.gp] SOLVED Cherrina_Pixie Junior Fellow Posts: 6 Threads: 3 Joined: Jun 2011 07/02/2011, 01:39 AM Code:? init(exp(Pi()/2));loop;genpent    base          4.81047738096535165547304    fixed point   0.E-145 + 1.00000000000000000000000*I    Pseudo Period 3.69464335841375533580710 + 1.06216001044294092389502*I generating superf taylor series; inverse Schroder equation, scnt 361 generating isuperf taylor series; Schroder equation, scnt 361 sexp(-0.5)= 0.44149388556590800271258410632775 1=loopcnt  6.734438825 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414683320304119199073161516641704293457800006586290888270406592 2=loopcnt  16.14879308 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682630880826737650093490296176463777662860412226388888800474 3=loopcnt  24.03560113 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626543550892577935620363027361724384104152456844251132995 4=loopcnt  32.04840534 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534634768199249898188360294331037280968748020127519588 5=loopcnt  40.38278448 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596146811726186051271337321983516231997071615402916 6=loopcnt  48.80427930 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596079045772784636752654658548653394290591963824627 7=loopcnt  57.30135824 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078746214147072484385025198343669362617159556147 8=loopcnt  65.83172331 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745561240878470035479673141387946649519338734 9=loopcnt  73.82815204 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556870620231393941232039016898103310735241 10=loopcnt  81.91862008 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861590530560306188724303721881960943663 11=loopcnt  90.09474083 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541674585781220374176541575975256630 12=loopcnt  98.32748089 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578659514474143180100763842212618 13=loopcnt  106.6292769 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578179603766836663909037659999642 14=loopcnt  114.9625455 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178760347939093471360666938970 15=loopcnt  123.3730561 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754814000844681999624069557 16=loopcnt  131.4033281 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801786292553376291713396 17=loopcnt  139.5050918 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717399690722642964464 18=loopcnt  147.6454299 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717245455070461469587 19=loopcnt  155.8374822 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244680794029640458 20=loopcnt  164.0688306 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679136515673714 21=loopcnt  172.3506366 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134861786060 22=loopcnt  182.0804715 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851850198 23=loopcnt  190.4876162 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843918 24=loopcnt  198.7628907 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818 25=loopcnt  207.2180495 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818 26=loopcnt  215.6331171 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818 27=loopcnt  223.9743246 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818 28=loopcnt  232.3153383 Riemann/sexp binary precision bits sexp(-0.5)= 0.4414682626534596078745556861541578178754801717244679134851843818 29=loopcnt  239.6076665 Riemann/sexp binary precision bits pentation base        4.81047738096535165547304 pentation(-0.5)       0.460975347014689190545301 sexp fixed point      -1.94648466297646768934135 sexp slope at fixed   11.8300204422121443717564 pentation period      2.54314035015181068719998*I pentation singularity -2.58922659360979627202546 + 1.27157017507590534359999*I pentation precision, via sexp(pent(-0.5))-pent(0.5)                       -6.42327456356856623983420 E-45 Excellent!! =) I used \p 144 and that took less than three minutes! « Next Oldest | Next Newest »

 Messages In This Thread Precision check on [pentation.gp] SOLVED - by Cherrina_Pixie - 06/28/2011, 07:17 AM RE: Precision check on [pentation.gp] fails? - by sheldonison - 06/28/2011, 02:33 PM RE: Precision check on [pentation.gp] fails? - by JmsNxn - 06/29/2011, 02:42 AM RE: Precision check on [pentation.gp] fails? - by sheldonison - 06/29/2011, 05:05 AM RE: Precision check on [pentation.gp] fails? - by sheldonison - 06/29/2011, 10:36 PM RE: Precision check on [pentation.gp] fails? - by sheldonison - 06/30/2011, 06:00 AM RE: Precision check on [pentation.gp] fails? - by sheldonison - 07/01/2011, 10:56 PM RE: Precision check on [pentation.gp] fails? - by Cherrina_Pixie - 07/02/2011, 01:39 AM

 Possibly Related Threads... Thread Author Replies Views Last Post Attempt to find a limit point but each step needs doubling the precision... Gottfried 15 34,404 11/09/2014, 10:25 PM Last Post: tommy1729 Expansion of base-e pentation andydude 13 40,191 07/02/2011, 01:40 AM Last Post: Cherrina_Pixie How to force precision in SAGE? jaydfox 2 8,151 08/18/2007, 11:08 PM Last Post: jaydfox

Users browsing this thread: 1 Guest(s)