Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
composition lemma
#2
Let f [ g^(-1)[x] ] + g^(-1) [ f[x] ] = 2 g[x]

replace x with g(x)

hence we get for x e image g(x)

f(x) + g^(-1)[ f[g(x)] ] = 2 g[g(x)]

if f and g are real analytic then for all real x

f(x) + g^(-1)[ f[g(x)] ] = 2 g[g(x)]

Let g(g(x)) = f(x) + r(x)/2

hence

f(x) + g^(-1)[ f[g(x)] ] = 2 f(x) + r(x)

g^(-1)[ f(g(x)) ] = f(x) + r(x)

thus r(x) = 0 for all x iff f(g(x)) = g(f(x))

which is the condition we needed.

QED

tommy1729

Reply


Messages In This Thread
composition lemma - by tommy1729 - 04/21/2012, 05:04 PM
RE: composition lemma - by tommy1729 - 04/29/2012, 08:32 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Improved infinite composition method tommy1729 5 1,531 07/10/2021, 04:07 AM
Last Post: JmsNxn
  Composition, bullet notation and the general role of categories MphLee 8 3,199 05/19/2021, 12:25 AM
Last Post: MphLee
  Inverse super-composition Xorter 11 25,029 05/26/2018, 12:00 AM
Last Post: Xorter
  Uniterated composition Xorter 2 5,930 09/15/2016, 05:17 PM
Last Post: MphLee
  [Collatz] Tommy's collatz lemma tommy1729 0 3,201 09/11/2014, 08:48 AM
Last Post: tommy1729
  [2014] composition of 3 functions. tommy1729 0 3,257 08/25/2014, 12:08 AM
Last Post: tommy1729
  lemma 1 tommy1729 2 7,354 06/30/2011, 11:47 AM
Last Post: tommy1729
  attracting fixed point lemma sheldonison 4 15,362 06/03/2011, 05:22 PM
Last Post: bo198214
  Uniqueness of tetration. Small lemma. Kouznetsov 9 15,041 04/14/2009, 01:20 AM
Last Post: Kouznetsov



Users browsing this thread: 2 Guest(s)