Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Generalized Wiener Ikehara for exp[1/2](n) instead of n ?
#1
Is there a Generalized Wiener Ikehara theorem for exp[1/2](n) instead of n ?

While considering Dirichlet series I wonder what would happen if we take a(0) + a(1)/exp[1/2](1)^s + a(2)/exp[1/2](2)^s + ... + a(n)/exp[1/2](n)^s instead of a(0) + a(1)/1^s + a(2)/2^s + ... a(n)/n^s.

Since exp^[1/2](n) grows faster than any polynomial P(n) we cannot apply the normal Wiener Ikehara theorem in most cases.

Im hoping to 'bridge' analytic number theory and tetration in this way ...

regards

tommy1729
Reply


Messages In This Thread
Generalized Wiener Ikehara for exp[1/2](n) instead of n ? - by tommy1729 - 12/17/2012, 05:01 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Some "Theorem" on the generalized superfunction Leo.W 29 2,840 06/25/2021, 09:42 PM
Last Post: Leo.W
  Generalized Kneser superfunction trick (the iterated limit definition) MphLee 25 4,684 05/26/2021, 11:55 PM
Last Post: MphLee
  Generalized phi(s,a,b,c) tommy1729 6 1,239 02/08/2021, 12:30 AM
Last Post: JmsNxn
  Where is the proof of a generalized integral for integer heights? Chenjesu 2 3,631 03/03/2019, 08:55 AM
Last Post: Chenjesu
  holomorphic binary operators over naturals; generalized hyper operators JmsNxn 15 26,128 08/22/2016, 12:19 AM
Last Post: JmsNxn
  Generalized arithmetic operator hixidom 16 22,977 06/11/2014, 05:10 PM
Last Post: hixidom
  Generalized Bieberbach conjectures ? tommy1729 0 2,806 08/12/2013, 08:11 PM
Last Post: tommy1729
  Generalized recursive operators Whiteknox 39 60,289 04/04/2011, 11:52 PM
Last Post: Stan



Users browsing this thread: 1 Guest(s)