• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 A kind of slog ? C + SUM f_n(x) ln^[n](x) ? tommy1729 Ultimate Fellow Posts: 1,370 Threads: 335 Joined: Feb 2009 03/09/2013, 01:33 PM I was thinking about C + f_1(x) ln(x) + f_2(x) ln^[2](x) + f_3(x) In^[3](x) + ... This should make a kind of slog. Or the similar : abel function for 2sinh(x). Similar question for C + f_1(x) arc2sinh(x) + f_2(x) arc2sinh^[2](x) + ... Regards tommy1729 « Next Oldest | Next Newest »

 Messages In This Thread A kind of slog ? C + SUM f_n(x) ln^[n](x) ? - by tommy1729 - 03/09/2013, 01:33 PM RE: A kind of slog ? C + SUM f_n(x) ln^[n](x) ? - by tommy1729 - 03/09/2013, 02:46 PM

 Possibly Related Threads... Thread Author Replies Views Last Post Some slog stuff tommy1729 15 14,011 05/14/2015, 09:25 PM Last Post: tommy1729 A limit exercise with Ei and slog. tommy1729 0 2,107 09/09/2014, 08:00 PM Last Post: tommy1729 A system of functional equations for slog(x) ? tommy1729 3 4,870 07/28/2014, 09:16 PM Last Post: tommy1729 slog(superfactorial(x)) = ? tommy1729 3 5,375 06/02/2014, 11:29 PM Last Post: tommy1729 [stuck] On the functional equation of the slog : slog(e^z) = slog(z)+1 tommy1729 1 2,716 04/28/2014, 09:23 PM Last Post: tommy1729 A simple yet unsolved equation for slog(z) ? tommy1729 0 2,039 04/27/2014, 08:02 PM Last Post: tommy1729 tetration base conversion, and sexp/slog limit equations sheldonison 44 60,380 02/27/2013, 07:05 PM Last Post: sheldonison A support for Andy's (P.Walker's) slog-matrix-method Gottfried 0 2,590 11/14/2011, 04:01 AM Last Post: Gottfried Does anyone have taylor series approximations for tetration and slog base e^(1/e)? JmsNxn 18 22,930 06/05/2011, 08:47 PM Last Post: sheldonison Regular slog for base sqrt(2) - Using z=2 jaydfox 13 19,564 03/10/2010, 12:47 PM Last Post: Gottfried

Users browsing this thread: 1 Guest(s)