• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 A kind of slog ? C + SUM f_n(x) ln^[n](x) ? tommy1729 Ultimate Fellow Posts: 1,455 Threads: 350 Joined: Feb 2009 03/09/2013, 02:46 PM For instance f_n(x) could be a gauss-like erf function with tops at sexp(n). regards tommy1729 « Next Oldest | Next Newest »

 Messages In This Thread A kind of slog ? C + SUM f_n(x) ln^[n](x) ? - by tommy1729 - 03/09/2013, 01:33 PM RE: A kind of slog ? C + SUM f_n(x) ln^[n](x) ? - by tommy1729 - 03/09/2013, 02:46 PM

 Possibly Related Threads... Thread Author Replies Views Last Post [MSE] Help on a special kind of functional equation. MphLee 4 301 06/14/2021, 09:52 PM Last Post: JmsNxn A support for Andy's (P.Walker's) slog-matrix-method Gottfried 4 4,122 03/08/2021, 07:13 PM Last Post: JmsNxn Some slog stuff tommy1729 15 22,069 05/14/2015, 09:25 PM Last Post: tommy1729 A limit exercise with Ei and slog. tommy1729 0 3,123 09/09/2014, 08:00 PM Last Post: tommy1729 A system of functional equations for slog(x) ? tommy1729 3 7,521 07/28/2014, 09:16 PM Last Post: tommy1729 slog(superfactorial(x)) = ? tommy1729 3 7,651 06/02/2014, 11:29 PM Last Post: tommy1729 [stuck] On the functional equation of the slog : slog(e^z) = slog(z)+1 tommy1729 1 4,167 04/28/2014, 09:23 PM Last Post: tommy1729 A simple yet unsolved equation for slog(z) ? tommy1729 0 2,962 04/27/2014, 08:02 PM Last Post: tommy1729 tetration base conversion, and sexp/slog limit equations sheldonison 44 86,552 02/27/2013, 07:05 PM Last Post: sheldonison Does anyone have taylor series approximations for tetration and slog base e^(1/e)? JmsNxn 18 30,838 06/05/2011, 08:47 PM Last Post: sheldonison

Users browsing this thread: 1 Guest(s)