Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
[2014] tommy's theorem sexp ' (z) =/= 0 ?
#1
Let sexp(z) be a solution that is analytic in the entire complex plane apart from z=-2,-3,-4,...

if w is a (finite) nonreal complex number such that

sexp ' (w) = 0

then it follows that for real k>0 :

sexp ' (w+k) = 0.

Proof : chain rule

exp^[k] is analytic :

sexp(w+k) = exp^[k](sexp(w))

sexp ' (w+k) = exp^[k] ' (sexp(w)) * sexp ' (w) = 0


Hence we get a contradiction : sexp is not nonpolynomial analytic near w (or w + k).
Conclusion there is no w such that sexp'(w) = 0.

Consequences : since 0 < sexp ' (z) < oo

slog ' (z) is also 0 < slog ' (z) < oo

since exp^[k](v) = sexp(slog(v)+k)

D exp^[k](v) = sexp ' (slog(v)+k) * slog ' (v) = nonzero * nonzero = nonzero..

=> 0 < exp^[k] ' (z) < oo

Tommy's theorem


Strongly related to the TPID 4 thread and some recent conjectures of sheldon.

the analogue difference is not understood yet.
(posted that already)


regards

tommy1729
Reply


Messages In This Thread
[2014] tommy's theorem sexp ' (z) =/= 0 ? - by tommy1729 - 06/17/2014, 12:18 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Tommy's Gaussian method. tommy1729 16 274 59 minutes ago
Last Post: JmsNxn
  Some "Theorem" on the generalized superfunction Leo.W 29 2,777 06/25/2021, 09:42 PM
Last Post: Leo.W
  " tommy quaternion " tommy1729 13 3,054 03/23/2021, 01:21 PM
Last Post: tommy1729
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 4,598 01/17/2017, 07:21 AM
Last Post: sheldonison
  Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 2,934 09/06/2016, 04:23 PM
Last Post: tommy1729
  Tommy's matrix method for superlogarithm. tommy1729 0 3,037 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 3,188 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 11,273 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy triangles tommy1729 1 3,694 11/04/2015, 01:17 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 2,819 10/09/2015, 07:39 AM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)