Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
tetration exp(z)-1+k
#9
(02/01/2015, 05:57 AM)sheldonison Wrote: The tangent superfunction provides an excellent piecemeal definition of tetration, and when it replaces the linear approximation, the resulting sexp(z) approximation has a continuous first and second derivative. This works for all tetration bases.

There are many nonlinear approximations that give a continuous first and second derivative.
Why is this preferred ? Is there a uniqueness condition ?

What is the advantage of this over just fitting the derivatives at the connection points ? ( Like A Robbins rediscovered )

regards

tommy1729
Reply


Messages In This Thread
tetration exp(z)-1+k - by sheldonison - 01/27/2015, 12:28 AM
RE: tetration exp(z)-1+k - by MphLee - 01/27/2015, 11:18 AM
RE: tetration exp(z)-1+k - by sheldonison - 01/27/2015, 03:07 PM
RE: tetration exp(z)-1+k - by tommy1729 - 01/30/2015, 07:20 AM
RE: tetration exp(z)-1+k - by sheldonison - 01/31/2015, 02:45 AM
RE: tetration exp(z)-1+k - by sheldonison - 02/01/2015, 05:57 AM
RE: tetration exp(z)-1+k - by tommy1729 - 02/01/2015, 11:16 PM
RE: tetration exp(z)-1+k - by sheldonison - 02/02/2015, 05:43 AM
RE: tetration exp(z)-1+k - by tommy1729 - 02/01/2015, 11:06 PM
RE: tetration exp(z)-1+k - by tommy1729 - 01/31/2015, 09:18 AM



Users browsing this thread: 1 Guest(s)