• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Conjecture on semi-exp base change [2015] tommy1729 Ultimate Fellow Posts: 1,645 Threads: 369 Joined: Feb 2009 03/24/2015, 03:14 PM (This post was last modified: 03/24/2015, 04:17 PM by tommy1729.) Let x,y > 0. Let B>b>2. Expb is exp base b and expB is exp base B. Analogue for ln. Conjecture : A(x,y) = expB^[1/2](lnB^[1/2](x) + lnB^[1/2](y)) B(x,y) = expb^[1/2](lnb^[1/2](x) + lnb^[1/2](y)) C(x,y) = (2+x^2+y^2)^(B-b) A(x,y)/( B(x,y) ln(2+C(x,y)) ) < 2 Regards Tommy1729 « Next Oldest | Next Newest »

 Messages In This Thread Conjecture on semi-exp base change [2015] - by tommy1729 - 03/24/2015, 03:14 PM

 Possibly Related Threads… Thread Author Replies Views Last Post semi-group homomorphism and tommy's U-tetration tommy1729 2 34 08/01/2022, 11:15 PM Last Post: JmsNxn Base -1 marraco 15 17,954 07/06/2022, 09:37 AM Last Post: Catullus tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 119 06/22/2022, 11:49 PM Last Post: tommy1729 I thought I'd take a crack at base = 1/2 JmsNxn 9 1,933 06/20/2022, 08:28 AM Last Post: Catullus conjecture 666 : exp^[x](0+si) tommy1729 2 1,285 05/17/2021, 11:17 PM Last Post: tommy1729 A different approach to the base-change method JmsNxn 0 1,133 03/17/2021, 11:15 PM Last Post: JmsNxn Complex Tetration, to base exp(1/e) Ember Edison 7 11,757 08/14/2019, 09:15 AM Last Post: sheldonison b^b^x with base 0

Users browsing this thread: 1 Guest(s)