Thread Rating:
  • 1 Vote(s) - 5 Average
  • 1
  • 2
  • 3
  • 4
  • 5
The inverse gamma function.
#1
Because of recent events here, I felt the need to talk about the inverse gamma function.

Im talking about the entire approximation of exp^[1/2] and the Taylor coefficients being O ( 1/ Gamma( n (arc2sinh(n) - 1) ) ).

Cleary from the viewpoint of numerical analysis it seems usefull to have a good approximation of the inverse gamma function.
The functional inverse that is.

Now my honesty forces me to quote the source of an intresting approximation of the inverse gamma function :

David W Cantrell

http://mathforum.org/kb/message.jspa?messageID=342552

In case that page gets removed I post the main formula here :

A is the positive zero of the digamma function ( 1.4616... )
B = sqrt(2 pi) / e - Gamma(A). ( 0.0365... )
L(x) = ln( (x+c) / sqrt(2 pi) )
W(x) is the Lambert W function. ( the functional inverse of x exp(x))
Gamma^[-1](x) = approx = 1/2 + L(x)/W(L(x)/e)
The error term goes to 0 as x goes to +oo.

Together with the approximation for the Lambert W :

LambertW(x) = ln(x) - ln(ln(x)) + ln(ln(x)) / ln(x)

this gives a practical way to compute the inverse gamma function.


I think there is also a page by wolfram about the inverse gamma but I cant find it ? ( And no, I dont mean the inverse regularized gamma or the statistical inverse gamma distribution )


I would like to see an integral representation of the inverse gamma function too.


regards

tommy1729
Reply
#2
(05/11/2014, 08:28 PM)tommy1729 Wrote: Because of recent events here, I felt the need to talk about the inverse gamma function.

Im talking about the entire approximation of exp^[1/2] and the Taylor coefficients being O ( 1/ Gamma( n (arc2sinh(n) - 1) ) ).

Cleary from the viewpoint of numerical analysis it seems usefull to have a good approximation of the inverse gamma function.
The functional inverse that is.

Now my honesty forces me to quote the source of an intresting approximation of the inverse gamma function :

David W Cantrell

http://mathforum.org/kb/message.jspa?messageID=342552

In case that page gets removed I post the main formula here :

A is the positive zero of the digamma function ( 1.4616... )
B = sqrt(2 pi) / e - Gamma(A). ( 0.0365... )
L(x) = ln( (x+c) / sqrt(2 pi) )
W(x) is the Lambert W function. ( the functional inverse of x exp(x))
Gamma^[-1](x) = approx = 1/2 + L(x)/W(L(x)/e)
The error term goes to 0 as x goes to +oo.

Together with the approximation for the Lambert W :

LambertW(x) = ln(x) - ln(ln(x)) + ln(ln(x)) / ln(x)

this gives a practical way to compute the inverse gamma function.


I think there is also a page by wolfram about the inverse gamma but I cant find it ? ( And no, I dont mean the inverse regularized gamma or the statistical inverse gamma distribution )


I would like to see an integral representation of the inverse gamma function too.


regards

tommy1729

I always like posting my own results ^_^, for



then by some of my fractional calculus theorems. For and




Is that a good integral expression?
Reply
#3
(05/11/2014, 10:12 PM)JmsNxn Wrote:
(05/11/2014, 08:28 PM)tommy1729 Wrote: Because of recent events here, I felt the need to talk about the inverse gamma function.

Im talking about the entire approximation of exp^[1/2] and the Taylor coefficients being O ( 1/ Gamma( n (arc2sinh(n) - 1) ) ).

Cleary from the viewpoint of numerical analysis it seems usefull to have a good approximation of the inverse gamma function.
The functional inverse that is.

Now my honesty forces me to quote the source of an intresting approximation of the inverse gamma function :

David W Cantrell

http://mathforum.org/kb/message.jspa?messageID=342552

In case that page gets removed I post the main formula here :

A is the positive zero of the digamma function ( 1.4616... )
B = sqrt(2 pi) / e - Gamma(A). ( 0.0365... )
L(x) = ln( (x+c) / sqrt(2 pi) )
W(x) is the Lambert W function. ( the functional inverse of x exp(x))
Gamma^[-1](x) = approx = 1/2 + L(x)/W(L(x)/e)
The error term goes to 0 as x goes to +oo.

Together with the approximation for the Lambert W :

LambertW(x) = ln(x) - ln(ln(x)) + ln(ln(x)) / ln(x)

this gives a practical way to compute the inverse gamma function.


I think there is also a page by wolfram about the inverse gamma but I cant find it ? ( And no, I dont mean the inverse regularized gamma or the statistical inverse gamma distribution )


I would like to see an integral representation of the inverse gamma function too.


regards

tommy1729

I always like posting my own results ^_^, for



then by some of my fractional calculus theorems. For and




Is that a good integral expression?

Dear James.

For starters if you are trying to find the integral I asked for :

1) I asked for the functional inverse of the Gamma function.
Not the reciprocal.
The whole OP was about the functional inverse of the Gamma function.
Although I could have stated that more clearly when I asked about the integral representation ...
2) ... Also defining f(x) By M^[-1] M^[1] f(x) seems a bit lame.
That looks similar to saying x = sqrt(x)^2 or x = exp(ln(x)).
3) despite 1) and 2) why do you wonder if that is OK ? You know the mellin inversion theorem.

Thanks anyway.

Maybe a second attempt.

Im not sure such an integral representation exists btw.


regards

tommy1729
Reply
#4
(05/12/2014, 11:06 PM)tommy1729 Wrote: Dear James.

For starters if you are trying to find the integral I asked for :

1) I asked for the functional inverse of the Gamma function.
Not the reciprocal.
The whole OP was about the functional inverse of the Gamma function.
Although I could have stated that more clearly when I asked about the integral representation ...
2) ... Also defining f(x) By M^[-1] M^[1] f(x) seems a bit lame.
That looks similar to saying x = sqrt(x)^2 or x = exp(ln(x)).
3) despite 1) and 2) why do you wonder if that is OK ? You know the mellin inversion theorem.

Thanks anyway.

Maybe a second attempt.

Im not sure such an integral representation exists btw.


regards

tommy1729

oooooo functional inverse. That's tricky...
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  New mathematical object - hyperanalytic function arybnikov 4 619 01/02/2020, 01:38 AM
Last Post: arybnikov
  Is there a function space for tetration? Chenjesu 0 559 06/23/2019, 08:24 PM
Last Post: Chenjesu
  Inverse Iteration Xorter 3 2,759 02/05/2019, 09:58 AM
Last Post: MrFrety
  Degamma function Xorter 0 1,012 10/22/2018, 11:29 AM
Last Post: Xorter
  Inverse super-composition Xorter 11 13,777 05/26/2018, 12:00 AM
Last Post: Xorter
  the inverse ackerman functions JmsNxn 3 6,148 09/18/2016, 11:02 AM
Last Post: Xorter
  Should tetration be a multivalued function? marraco 17 17,845 01/14/2016, 04:24 AM
Last Post: marraco
  Introducing new special function : Lambert_t(z,r) tommy1729 2 3,832 01/10/2016, 06:14 PM
Last Post: tommy1729
  Inverse power tower functions tommy1729 0 1,959 01/04/2016, 12:03 PM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 6,595 11/07/2015, 01:02 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)