Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
2015 Continuum sum conjecture
#2
The answer appears to be simple.

That is considering we work with the same continuum sum.

Within an analytic region :
Let r > 0.
exp^[1+r](x) = exp^[r](0) + F(exp(x))

where F(0) = 0 and is analytic.

Therefore the continuum sum CS is given by

T_r(x) = CS exp^[1+r](x) = exp^[r](0) x + G(exp(x)).

Therefore T(x) - T(x - 2pi i) = exp^[r](0) * 2 pi i.

regards

tommy1729
Reply


Messages In This Thread
2015 Continuum sum conjecture - by tommy1729 - 05/25/2015, 11:29 PM
RE: 2015 Continuum sum conjecture - by tommy1729 - 05/26/2015, 12:10 PM
RE: 2015 Continuum sum conjecture - by tommy1729 - 05/26/2015, 12:18 PM
RE: 2015 Continuum sum conjecture - by tommy1729 - 05/26/2015, 12:24 PM

Possibly Related Threads...
Thread Author Replies Views Last Post
  @Gottfried : answer to your conjecture on MSE. tommy1729 2 2,403 02/05/2017, 09:38 PM
Last Post: Gottfried
  Polygon cyclic fixpoint conjecture tommy1729 1 2,039 05/18/2016, 12:26 PM
Last Post: tommy1729
  [2015] Spiderweb theory tommy1729 0 1,715 03/29/2015, 06:25 PM
Last Post: tommy1729
  [2015] 4th Zeration from base change pentation tommy1729 5 5,423 03/29/2015, 05:47 PM
Last Post: tommy1729
  [2015] s(exp(d(x))) = x + 2 tommy1729 1 2,031 03/26/2015, 05:35 PM
Last Post: tommy1729
  Conjecture on semi-exp base change [2015] tommy1729 0 1,604 03/24/2015, 03:14 PM
Last Post: tommy1729
  [2015] New zeration and matrix log ? tommy1729 1 2,974 03/24/2015, 07:07 AM
Last Post: marraco
  2 fixpoint pairs [2015] tommy1729 0 1,669 02/18/2015, 11:29 PM
Last Post: tommy1729
  Tommy's conjecture : every positive integer is the sum of at most 8 pentatope numbers tommy1729 0 2,017 08/17/2014, 09:01 PM
Last Post: tommy1729
  Another way to continuum sum! JmsNxn 6 6,163 06/06/2014, 05:09 PM
Last Post: MphLee



Users browsing this thread: 1 Guest(s)