Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#1
In analogue to Pascal triangle ( a + b) , i consider the triangles

1) a^2 + b^2
2) (a^2 + a + b^2 + b)/2

And in particular the analogue central binomial coëfficiënts.

Regards

Tommy1729
Reply
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Tommy's Gaussian method. tommy1729 34 8,448 06/28/2022, 02:23 PM
Last Post: tommy1729
  " tommy quaternion " tommy1729 25 7,489 06/25/2022, 10:02 PM
Last Post: tommy1729
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 40 06/22/2022, 11:49 PM
Last Post: tommy1729
  tommy beta method tommy1729 0 515 12/09/2021, 11:48 PM
Last Post: tommy1729
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 1,093 09/20/2021, 04:29 AM
Last Post: JmsNxn
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 5,538 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 3,672 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 3,799 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 13,447 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 3,365 10/09/2015, 07:39 AM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)