Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#1
In analogue to Pascal triangle ( a + b) , i consider the triangles

1) a^2 + b^2
2) (a^2 + a + b^2 + b)/2

And in particular the analogue central binomial coëfficiënts.

Regards

Tommy1729
Reply
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  semi-group homomorphism and tommy's U-tetration tommy1729 2 30 08/01/2022, 11:15 PM
Last Post: JmsNxn
  " tommy quaternion " tommy1729 30 8,144 07/04/2022, 10:58 PM
Last Post: Catullus
  Tommy's Gaussian method. tommy1729 34 9,166 06/28/2022, 02:23 PM
Last Post: tommy1729
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 117 06/22/2022, 11:49 PM
Last Post: tommy1729
  tommy beta method tommy1729 0 595 12/09/2021, 11:48 PM
Last Post: tommy1729
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 1,227 09/20/2021, 04:29 AM
Last Post: JmsNxn
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 5,659 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 3,729 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 3,855 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 13,715 11/07/2015, 01:02 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)