Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#1
In analogue to Pascal triangle ( a + b) , i consider the triangles

1) a^2 + b^2
2) (a^2 + a + b^2 + b)/2

And in particular the analogue central binomial coëfficiënts.

Regards

Tommy1729
Reply
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Possibly Related Threads...
Thread Author Replies Views Last Post
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 232 09/20/2021, 04:29 AM
Last Post: JmsNxn
  " tommy quaternion " tommy1729 14 4,369 09/16/2021, 11:34 PM
Last Post: tommy1729
  Tommy's Gaussian method. tommy1729 20 2,562 08/19/2021, 09:40 PM
Last Post: tommy1729
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 4,866 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 3,218 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 3,363 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 11,901 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 2,983 10/09/2015, 07:39 AM
Last Post: tommy1729
  Tommy's hyperlog tommy1729 0 3,117 06/11/2015, 08:23 AM
Last Post: tommy1729
Sad Tommy-Mandelbrot function tommy1729 0 3,472 04/21/2015, 01:02 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)