Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Tommy triangles
#1
In analogue to Pascal triangle ( a + b) , i consider the triangles

1) a^2 + b^2
2) (a^2 + a + b^2 + b)/2

And in particular the analogue central binomial coëfficiënts.

Regards

Tommy1729
Reply
#2
Obviosly everything grows like C 2^2^(n+O(1)) nomatter in what direction you go.
More precise results for specific cases are possible and intresting.
And the number theoretical properties.

Regards

Tommy1729
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  " tommy quaternion " tommy1729 30 7,686 07/04/2022, 10:58 PM
Last Post: Catullus
  Tommy's Gaussian method. tommy1729 34 8,669 06/28/2022, 02:23 PM
Last Post: tommy1729
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 65 06/22/2022, 11:49 PM
Last Post: tommy1729
  tommy beta method tommy1729 0 537 12/09/2021, 11:48 PM
Last Post: tommy1729
  tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 1,115 09/20/2021, 04:29 AM
Last Post: JmsNxn
  tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 1 5,558 01/17/2017, 07:21 AM
Last Post: sheldonison
  Tommy's matrix method for superlogarithm. tommy1729 0 3,688 05/07/2016, 12:28 PM
Last Post: tommy1729
  Dangerous limits ... Tommy's limit paradox tommy1729 0 3,810 11/27/2015, 12:36 AM
Last Post: tommy1729
  Tommy's Gamma trick ? tommy1729 7 13,486 11/07/2015, 01:02 PM
Last Post: tommy1729
  Tommy-Gottfried divisions. tommy1729 0 3,375 10/09/2015, 07:39 AM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)