I already saw it on Arxiv! I'm pretty updated on your arxiv page (stalker mode ;P).

I find all of this extremely exciting... I can't even imagine what is the role of this function, that I guess we agree must be a very special one in the sea of new functions that your iteration method can produce, in the universe and physics... I mean... what the hell it stands for? what does it computes? History tell us that almost every mathematical concept has a role in our understanding of the universe even if sometimes it needed decades or centuries before the correct link was found.

I also think that this is, as usual, only the tip of the iceberg: this is only the analytic view on the subject. But we know that complex analysis is deeply linked with a lot of other interesting fields... from geometry to number theory!

Think of the historical jump in complexity from integer/rational/irrational algebra to analysis/real and complex exponentiation. And apply it to tetration/all the hyperoperations. Are we maybe on the verge of a new mathematical revolution?

Ok, this last paragraph is a bit more extreeme: a lot of fantasy, sorry.

But I'm still very excited.

But back on the topic: I was not able to finish your last two papers (too difficult for me so I'm slower at reading)

So forgive me if I ask you something that appears there.

Now you have some kind of operator that maps functions to their iteration (using your notation).

(where is a set of complex-valued function on an addition-closed subset of )

Some serious mathematician would ask if you have started to compare it with other known methods, when they match and when they do not. But I'm not so serious or professional so I would like to ask you: have you some ideas/intuition on the behavior of this map and its dynamics in general? Is it injective? Has it fixed points? These bounded analytic semiHyper-operators are just an orbit (a flow) of this map.

__________

Last note: from the algebraic point of view, this may sound unexpected to me but obvious to the expert, the flow is just the "manifestation" of some more basic "fundamental blocks/bricks":

See the following, I believe that this progression is quite remarkable and speaks for itself:

Monoid/group action

- abelian monoid (or group)

- (or equivalently is an homomorphism where

concept of "evaluation"

- monoid (or group )

- (or equivalently is an homomorphism where

concept of "Iteration"

- ring (or field )

- monoid (or group )

- or equivalently is an homomorphism where

- or equivalently is an homomorphism

Is it known that the flows are definable by iteration and evaluation...

but the fact that all those concepts are structurally and algebraically very similar... are kind of group actions or "enriched" actions (such as module structures or vector space structures) what changes are just the domains it's mind-blowing.

At this point we may ask for (I.E. we extend the domain of iteration to the domain of evaluation like for example from natural iteration of complex function to complex iteration of complex functions) and for a new external operation satisfying

(the main example is )

Here is where we hget the superfunction and where we get an external operation that is structurally very different from the previous. Do the problems with iteration comes from this algebraic loss of "regular structure"?

in fact the rank arise as iteration of on the right( with this notation):

Now it gets interesting:

by definition of nabla

apply to both side using the evaluation

Applyng the algebraic properties of these operation we get

where 1 is the multiplicative unit of the ring/field of exponents, we then apply the definition of nabla and of "rank-exponentiation" again

If the link is not clear fix the value of

and and define a new function , like we did for the flow:

and we get

This is just to point that much of the equations are out there embedded in the intrinsic algebraic structure... and can be derived algebraically without analysis.

I find all of this extremely exciting... I can't even imagine what is the role of this function, that I guess we agree must be a very special one in the sea of new functions that your iteration method can produce, in the universe and physics... I mean... what the hell it stands for? what does it computes? History tell us that almost every mathematical concept has a role in our understanding of the universe even if sometimes it needed decades or centuries before the correct link was found.

I also think that this is, as usual, only the tip of the iceberg: this is only the analytic view on the subject. But we know that complex analysis is deeply linked with a lot of other interesting fields... from geometry to number theory!

Think of the historical jump in complexity from integer/rational/irrational algebra to analysis/real and complex exponentiation. And apply it to tetration/all the hyperoperations. Are we maybe on the verge of a new mathematical revolution?

Ok, this last paragraph is a bit more extreeme: a lot of fantasy, sorry.

But I'm still very excited.

But back on the topic: I was not able to finish your last two papers (too difficult for me so I'm slower at reading)

So forgive me if I ask you something that appears there.

Now you have some kind of operator that maps functions to their iteration (using your notation).

(where is a set of complex-valued function on an addition-closed subset of )

Some serious mathematician would ask if you have started to compare it with other known methods, when they match and when they do not. But I'm not so serious or professional so I would like to ask you: have you some ideas/intuition on the behavior of this map and its dynamics in general? Is it injective? Has it fixed points? These bounded analytic semiHyper-operators are just an orbit (a flow) of this map.

__________

Last note: from the algebraic point of view, this may sound unexpected to me but obvious to the expert, the flow is just the "manifestation" of some more basic "fundamental blocks/bricks":

See the following, I believe that this progression is quite remarkable and speaks for itself:

Monoid/group action

- abelian monoid (or group)

- (or equivalently is an homomorphism where

concept of "evaluation"

- monoid (or group )

- (or equivalently is an homomorphism where

concept of "Iteration"

- ring (or field )

- monoid (or group )

- or equivalently is an homomorphism where

- or equivalently is an homomorphism

Is it known that the flows are definable by iteration and evaluation...

but the fact that all those concepts are structurally and algebraically very similar... are kind of group actions or "enriched" actions (such as module structures or vector space structures) what changes are just the domains it's mind-blowing.

At this point we may ask for (I.E. we extend the domain of iteration to the domain of evaluation like for example from natural iteration of complex function to complex iteration of complex functions) and for a new external operation satisfying

(the main example is )

Here is where we hget the superfunction and where we get an external operation that is structurally very different from the previous. Do the problems with iteration comes from this algebraic loss of "regular structure"?

in fact the rank arise as iteration of on the right( with this notation):

Now it gets interesting:

(05/06/2016, 06:30 PM)JmsNxn Wrote:

is a well defined function for . Where in further, trivially

and much less trivially

by definition of nabla

apply to both side using the evaluation

Applyng the algebraic properties of these operation we get

where 1 is the multiplicative unit of the ring/field of exponents, we then apply the definition of nabla and of "rank-exponentiation" again

If the link is not clear fix the value of

and and define a new function , like we did for the flow:

and we get

This is just to point that much of the equations are out there embedded in the intrinsic algebraic structure... and can be derived algebraically without analysis.

MathStackExchange account:MphLee