• 1 Vote(s) - 5 Average
• 1
• 2
• 3
• 4
• 5
 Inverse Iteration Xorter Fellow   Posts: 93 Threads: 30 Joined: Aug 2016 09/18/2016, 10:36 AM Composition: f(x) o c = f( c ) Iterated composition (steinix-ankh): ☉f(x)☥^n_x = f(x)of(x)o...of(x) n times Iterator-ankh operator: It aOb ☥ = ☉ aOb ☥^n-1_b |(b=a)|(n=b) It a+b ☥ = ☉ a+b ☥^n-1_b |(b=a)|(n=b) = a+(a+(a+...a+b))|(b=a)|(n=b) = a*b It a*b ☥ = a^b It a^b ☥ = a^^b (tetration) ...etc. It FoG ☥ = ☉ F ☥^G Now, we know how to iterate operators. But I do not know how to iterate functions, or my question: What is the inverse method of iteration? Xorter Unizo MrFrety Junior Fellow  Posts: 2 Threads: 0 Joined: Dec 2018 01/02/2019, 10:04 PM > What is the inverse method of iteration?                 The closest thing I've found is counting iterations of the inverse. As an algorithm:      Start with the outcome of your iteration of a group element as input. Count how often you can apply the corresponding inverse group element until you reach the neutral element. The counted number gives you the original number N of iterations. Xorter Fellow   Posts: 93 Threads: 30 Joined: Aug 2016 02/04/2019, 10:27 PM (01/02/2019, 10:04 PM)MrFrety Wrote: > What is the inverse method of iteration?                 The closest thing I've found is counting iterations of the inverse. As an algorithm:      Start with the outcome of your iteration of a group element as input. Count how often you can apply the corresponding inverse group element until you reach the neutral element. The counted number gives you the original number N of iterations. Let me use another notation for iteration as iterative multiplication: a ( O Z 0 ) b = a O b a ( O Z 1 ) b = a O a O ... O a, b times which is the first iteration of operator O a ( O Z n ) b = a ( O Z n-1 ) a ( O Z n-1 ) ... ( O Z n-1 ) a, b times So a ( + Z n-1 ) b = a [n] b which is the well-known n-ation, like tetration (n=4). It is binary operator, it needs an operator (e.g. addition, composition, logical and) and a number which is the level of the iteration. So it has two inverses: 1st is a trivial uniteration: ( O Z n ) Z -n = O 2nd is the iterative logarithm you talked about. It is a good method to get the inverse of the operator O, and apply it times such you do not get the neutral element... but what if you fall through the neutral element like how at function gamma. Let us define gamma as a binary operator: gamma_b(b,x) = int from 0 to +oo b^t/t^x dt. As I see this operator is between the exponentiation and tetration because of the limits of these quationts. If I sign iterative logarithm as the following: Zlog(O) - Zlog(P) = n, so that P Z n = O, then what is Zlog(gamma_b)? Xorter Unizo MrFrety Junior Fellow  Posts: 2 Threads: 0 Joined: Dec 2018 02/05/2019, 09:58 AM (02/04/2019, 10:27 PM)Xorter Wrote: (01/02/2019, 10:04 PM)MrFrety Wrote: > What is the inverse method of iteration?                 The closest thing I've found is counting iterations of the inverse. As an algorithm:      Start with the outcome of your iteration of a group element as input. Count how often you can apply the corresponding inverse group element until you reach the neutral element. The counted number gives you the original number N of iterations. Let me use another notation for iteration as iterative multiplication: a ( O Z 0 ) b = a O b a ( O Z 1 ) b = a O a O ... O a, b times which is the first iteration of operator O a ( O Z n ) b = a ( O Z n-1 ) a ( O Z n-1 ) ... ( O Z n-1 ) a, b times So a ( + Z n-1 ) b = a [n] b which is the well-known n-ation, like tetration (n=4). It is binary operator, it needs an operator (e.g. addition, composition, logical and) and a number which is the level of the iteration. So it has two inverses: 1st is a trivial uniteration: ( O Z n ) Z -n = O 2nd is the iterative logarithm you talked about. It is a good method to get the inverse of the operator O, and apply it times such you do not get the neutral element... but what if you fall through the neutral element like how at function gamma. Let us define gamma as a binary operator: gamma_b(b,x) = int from 0 to +oo b^t/t^x dt. As I see this operator is between the exponentiation and tetration because of the limits of these quationts. If I sign iterative logarithm as the following: Zlog(O) - Zlog(P) = n, so that P Z n = O, then what is Zlog(gamma_b)?I'm not sure whether I follow completely but my first intuition (after older thought) would be that we just have to accept it as a new irreducable number like log(2), 1/2 or 15/4 ... There you also fall through the neutral element... 15-4-4-4-4=-1 ... « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post inverse supers of x^3 tommy1729 0 74 06/12/2022, 12:02 AM Last Post: tommy1729 Fractional iteration of x^2+1 at infinity and fractional iteration of exp bo198214 17 28,601 06/11/2022, 12:24 PM Last Post: tommy1729 Categories of Tetration and Iteration andydude 13 29,205 04/28/2022, 09:14 AM Last Post: MphLee On extension to "other" iteration roots Leo.W 7 1,948 09/29/2021, 04:12 PM Last Post: Leo.W The second iteration of my most recent paper JmsNxn 3 1,884 02/07/2021, 11:11 PM Last Post: JmsNxn Inverse super-composition Xorter 11 26,503 05/26/2018, 12:00 AM Last Post: Xorter Half-iteration of x^(n^2) + 1 tommy1729 3 8,650 03/09/2017, 10:02 PM Last Post: Xorter Iteration basics Ivars 27 47,107 01/02/2017, 05:21 PM Last Post: Xorter Inverse power tower functions tommy1729 0 3,678 01/04/2016, 12:03 PM Last Post: tommy1729 The inverse gamma function. tommy1729 3 12,713 05/13/2014, 02:18 PM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s)