Extrapolated Faá Di Bruno's Formula
#1
Here is how to evaluate the nth derivative of f o g:
https://en.wikipedia.org/wiki/Faà_di_Bru...orial_form
http://www.maa.org/sites/default/files/i...17-234.pdf
My question is that: Is it possible to get a formula for integrate f o g dx? Where integrating means the -1st derivative.
Can we extrapolate this formula to the negative numbers?
Xorter Unizo
Reply
#2
What if I say the next:
N=-1
int f o g dx = ?
-1b[-1] = -1
b[-1] = 1
k = 1
int f o g dx = (-1)!/1! f' o g * (g^(-1)/(-1)!)^1 = f' o g * int g dx

But it does not work ... Why?
Xorter Unizo
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  f(x+y) g(f(x)f(y)) = f(x) + f(y) addition formula ? tommy1729 1 54 01/13/2023, 08:45 PM
Last Post: tommy1729
Question Formula for the Taylor Series for Tetration Catullus 8 2,111 06/12/2022, 07:32 AM
Last Post: JmsNxn
  There is a non recursive formula for T(x,k)? marraco 5 4,429 12/26/2020, 11:05 AM
Last Post: Gottfried
  Explicit formula for the tetration to base [tex]e^{1/e}[/tex]? mike3 1 6,233 02/13/2015, 02:26 PM
Last Post: Gottfried
  fractional iteration by schröder and by binomial-formula Gottfried 0 4,425 11/23/2011, 04:45 PM
Last Post: Gottfried
  simple base conversion formula for tetration JmsNxn 0 5,158 09/22/2011, 07:41 PM
Last Post: JmsNxn
  Change of base formula using logarithmic semi operators JmsNxn 4 13,508 07/08/2011, 08:28 PM
Last Post: JmsNxn
  Breaking New Ground In The Quest For The "Analytical" Formula For Tetration. mike3 5 14,691 05/09/2011, 05:08 AM
Last Post: mike3
  Constructing the "analytical" formula for tetration. mike3 13 31,558 02/10/2011, 07:35 AM
Last Post: mike3
  One very important formula Ansus 7 18,597 11/03/2010, 04:21 AM
Last Post: Ansus



Users browsing this thread: 1 Guest(s)