• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 tommy's simple solution ln^[n](2sinh^[n+x](z)) tommy1729 Ultimate Fellow Posts: 1,491 Threads: 355 Joined: Feb 2009 01/16/2017, 01:29 PM Consider f(z,x) = Lim(n --> oo)  ln^[n] ( 2sinh^[n+x] (z) ). This simple Function satisfies exp(f(z,x)) = f(z,x+1). So we have a simple superfunction that requires only the real iterations of 2sinh(z). Notice lim ( n --> oo) 2sinh^[n]( 2^(z-n)) is a superf for 2sinh. f(z,x) could be analytic for re(z) > 1. Also , is it really new ? Or is it the ( analytic continuation ? ) of the 2sinh method ? It sure is very similar. ---- Mick wondered if F^[n] ( g^[n] ) is analytic for f = sqrt and g = x^2 +1. --- Regards Tommy1729 sheldonison Long Time Fellow Posts: 683 Threads: 24 Joined: Oct 2008 01/17/2017, 07:21 AM (This post was last modified: 01/17/2017, 04:19 PM by sheldonison.) (01/16/2017, 01:29 PM)tommy1729 Wrote: Consider f(z,x) = Lim(n --> oo)  ln^[n] ( 2sinh^[n+x] (z) ). This simple Function satisfies exp(f(z,x)) = f(z,x+1). ... Or is it the ( analytic continuation ? ) of the 2sinh method ?consider ignoring z, and using the formal inverse Schroeder series (below) for putting 2sinh^[ox] into correspondence with 2^x.  Then your sexp2sinh/TommySexp function is exactly: $k=f^{-1}(1);\;\;\;\text{TommySexp}(x)=f(k+x)$ k=0.0678383660707522254065 This also happens to be the definition I personally used for your TommySexp function, but numerically, they are all exactly the same; infinitely differentiable but conjectured nowhere analytic.   TommySexp(-0.5)=0.498743364531671 Kneser's sexp(-0.5)= 0.498563287941114 Since f(x) is only defined at the real axis, the term analytic continuation has no meaning. "Mick wondered if F^[n] ( g^[n] ) is analytic for f = sqrt and g = x^2 +1",  yes it is.  So long as you restrict yourself to the region where |g^[n]|>>1 then it will converge.  Have Mick ask on Mathstack if he wants more details. Code:2sinh^[0] = formal2sinh_ischroeder(1) = 1.05804904330694441126 {formal2sinh_ischroeder=  x + +x^ 3*  1/18 +x^ 5*  13/5400 +x^ 7*  1193/14288400 +x^ 9*  219983/87445008000 +x^11*  225002297/3280062250080000 +x^13*  3624242332901/2095369366596105600000 +x^15*  294797208996087793/7208971629918239589408000000 +x^17*  532541776280711150089/581464560943620715682280960000000 +x^19*  4423796286922654904342141267/225896613039975363731770463347368960000000 ...} - Sheldon « Next Oldest | Next Newest »

 Possibly Related Threads... Thread Author Replies Views Last Post Tommy's Gaussian method. tommy1729 24 3,951 11/11/2021, 12:58 AM Last Post: JmsNxn On the $$2 \pi i$$-periodic solution to tetration, base e JmsNxn 0 230 09/28/2021, 05:44 AM Last Post: JmsNxn tommy's singularity theorem and connection to kneser and gaussian method tommy1729 2 493 09/20/2021, 04:29 AM Last Post: JmsNxn " tommy quaternion " tommy1729 14 5,318 09/16/2021, 11:34 PM Last Post: tommy1729 Nixon-Banach-Lambert-Raes tetration is analytic , simple and “ closed form “ !! tommy1729 11 3,954 02/04/2021, 03:47 AM Last Post: JmsNxn Tommy's matrix method for superlogarithm. tommy1729 0 3,358 05/07/2016, 12:28 PM Last Post: tommy1729 2sinh^[r](z) = 0 ?? tommy1729 0 2,618 02/23/2016, 11:13 PM Last Post: tommy1729 Dangerous limits ... Tommy's limit paradox tommy1729 0 3,480 11/27/2015, 12:36 AM Last Post: tommy1729 Tommy's Gamma trick ? tommy1729 7 12,316 11/07/2015, 01:02 PM Last Post: tommy1729 Tommy triangles tommy1729 1 4,088 11/04/2015, 01:17 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)