• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Trying to find a fast converging series of normalization constants; plus a recap JmsNxn Long Time Fellow    Posts: 568 Threads: 95 Joined: Dec 2010 10/26/2021, 02:12 AM (This post was last modified: 10/26/2021, 07:03 AM by JmsNxn.) So, I've been asking myself, how do we normalize the beta method for each iteration. If we start with the naive idea that, \begin{align} \widetilde{F}_{\lambda,b}^1(z) &= \beta_{\lambda,b}(z) - \log_b(1+\exp(-\lambda z))\\ \widetilde{F}_{\lambda,b}^n(z) &= \log^{\circ n}_b \beta_{\lambda,b}(z+n) = \beta_{\lambda,b} (z) + \tau_{\lambda,b}(z)\\ F^n_{\lambda,b}(z) &= \widetilde{F}_{\lambda,b}^n(z+k_n)\\ F^n_{\lambda,b}(0) &= \widetilde{F}_{\lambda,b}^n(k_n) = 1\\ \end{align} Where, \begin{align} \beta_{\lambda,b}(z) &= \Omega_{j=1}^\infty \dfrac{e^{bt}}{e^{\lambda(j- z)} + 1} \bullet t\\ \beta_{\lambda,b}(z+1) &= \dfrac{e^{b\beta_{\lambda,b}(z)}}{e^{-\lambda z}+1}\\ \end{align} We start to approach a more effective programming. First of all, I want to work through $$\beta_{\lambda,b}$$. This function is holomorphic everywhere that: $$\sum_{j=1}^\infty \dfrac{e^{bt}}{1+e^{\lambda(j-z)}}$$ Converges compactly normally for $$(t,z,b,\lambda)$$--as we throw $$t$$ away, this just needs to work for $$t\approx 0$$. All in all, this beast converges where ever: $$\sum_{j=1}^\infty \left| \left|\dfrac{e^{bt}}{1+e^{\lambda(j-z)}}\right| \right|_{\mathcal{K},\mathcal{S},\mathcal{B}, \mathcal{L}} < \infty\\$$ Where $$t \in \mathcal{K}$$ is a compact set of $$\mathbb{C}$$. Where $$z \in \mathcal{S}$$ is a compact set of $$\mathbb{C}$$. And where $$b \in \mathcal{B}$$ is a compact set of $$\mathbb{C}$$. Finally $$\lambda \in \mathcal{L}$$, a compact set of $$\mathbb{C}$$. Checking where the sum has this summative property is elementary. And we get that, \begin{align} \beta_{\lambda,b}(z)\,\,&\text{is holomorphic on}\,\,\mathbb{S}\\ \mathbb{S} &= \{(z,b,\lambda) \in \mathbb{C}^3\,|\,\Re \lambda>0,\, \lambda(j-z)\neq (2k+1)\pi i,\,\forall j,k \in \mathbb{Z},\,j\ge 1,\,b \neq 0\}\\ \end{align} Because this is exactly where the sum converges compactly normally. So, for all compact $$\mathcal{A} \subset \mathbb{S}$$ we necessarily get that,  \sum_{j=1}^\infty \left| \left|\dfrac{e^{bt}}{1+e^{\lambda(j-z)}}\right| \right|_{\mathcal{A}, |t|

 Possibly Related Threads... Thread Author Replies Views Last Post Perhaps a new series for log^0.5(x) Gottfried 3 4,415 03/21/2020, 08:28 AM Last Post: Daniel Taylor series of i[x] Xorter 12 23,099 02/20/2018, 09:55 PM Last Post: Xorter How fast does this grow ?? tommy1729 0 2,567 11/13/2017, 02:06 AM Last Post: tommy1729 How to find the first negative derivative ? tommy1729 0 2,987 02/13/2017, 01:30 PM Last Post: tommy1729 An explicit series for the tetration of a complex height Vladimir Reshetnikov 13 24,279 01/14/2017, 09:09 PM Last Post: Vladimir Reshetnikov Complaining about MSE ; attitude against tetration and iteration series ! tommy1729 0 3,296 12/26/2016, 03:01 AM Last Post: tommy1729 2 fixpoints , 1 period --> method of iteration series tommy1729 0 3,357 12/21/2016, 01:27 PM Last Post: tommy1729 Taylor series of cheta Xorter 13 25,294 08/28/2016, 08:52 PM Last Post: sheldonison Tetration series for integer exponent. Can you find the pattern? marraco 20 30,020 02/21/2016, 03:27 PM Last Post: marraco [AIS] (alternating) Iteration series: Half-iterate using the AIS? Gottfried 33 65,831 03/27/2015, 11:28 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)