Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
tommy beta method
#1
Consider the following (double) integral where h is a positive infinitesimal



This integral is intended as an analogue for erf(s) but which is suppose to go - C for Re(s) << -1 and + C for Re(s) >> 1 ( independant of the imaginary part ! ).

Where C is a (probably nonzero and positive ) real constant.

Assuming that indeed 0 < C we continue :
 


Now consider 



And finally we get lim n to +oo ;



I call it tommy beta method , hence "tb"

This ofcourse requires more research.

regards

tommy1729

Tom Marcel Raes
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  tommy's group addition isomo conjecture tommy1729 1 54 09/16/2022, 12:25 PM
Last Post: tommy1729
  tommy's displacement equation tommy1729 1 46 09/16/2022, 12:24 PM
Last Post: tommy1729
  Is this the beta method? bo198214 3 221 08/18/2022, 04:18 AM
Last Post: JmsNxn
  semi-group homomorphism and tommy's U-tetration tommy1729 5 220 08/12/2022, 08:14 PM
Last Post: tommy1729
  Describing the beta method using fractional linear transformations JmsNxn 5 238 08/07/2022, 12:15 PM
Last Post: JmsNxn
Question The Etas and Euler Numbers of the 2Sinh Method Catullus 2 222 07/18/2022, 10:01 AM
Last Post: Catullus
  " tommy quaternion " tommy1729 30 8,809 07/04/2022, 10:58 PM
Last Post: Catullus
  Tommy's Gaussian method. tommy1729 34 9,879 06/28/2022, 02:23 PM
Last Post: tommy1729
  tommy's new conjecture/theorem/idea (2022) ?? tommy1729 0 171 06/22/2022, 11:49 PM
Last Post: tommy1729
  The beta method thesis JmsNxn 9 1,503 04/20/2022, 05:32 AM
Last Post: Ember Edison



Users browsing this thread: 1 Guest(s)