tommy beta method
#1
Consider the following (double) integral where h is a positive infinitesimal



This integral is intended as an analogue for erf(s) but which is suppose to go - C for Re(s) << -1 and + C for Re(s) >> 1 ( independant of the imaginary part ! ).

Where C is a (probably nonzero and positive ) real constant.

Assuming that indeed 0 < C we continue :
 


Now consider 



And finally we get lim n to +oo ;



I call it tommy beta method , hence "tb"

This ofcourse requires more research.

regards

tommy1729

Tom Marcel Raes
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  tommy's "linear" summability method tommy1729 8 121 2 hours ago
Last Post: tommy1729
  " tommy quaternion " tommy1729 33 10,612 02/05/2023, 10:51 PM
Last Post: tommy1729
  another infinite composition gaussian method clone tommy1729 2 69 01/24/2023, 12:53 AM
Last Post: tommy1729
  Semi-group iso , tommy's limit fix method and alternative limit for 2sinh method tommy1729 1 173 12/30/2022, 11:27 PM
Last Post: tommy1729
  [MSE] short review/implem. of Andy's method and a next step Gottfried 4 486 11/03/2022, 11:51 AM
Last Post: Gottfried
  tommy's group addition isomo conjecture tommy1729 1 320 09/16/2022, 12:25 PM
Last Post: tommy1729
  tommy's displacement equation tommy1729 1 309 09/16/2022, 12:24 PM
Last Post: tommy1729
  Is this the beta method? bo198214 3 550 08/18/2022, 04:18 AM
Last Post: JmsNxn
  semi-group homomorphism and tommy's U-tetration tommy1729 5 601 08/12/2022, 08:14 PM
Last Post: tommy1729
  Describing the beta method using fractional linear transformations JmsNxn 5 710 08/07/2022, 12:15 PM
Last Post: JmsNxn



Users browsing this thread: 1 Guest(s)