Computing Integer Tetrations Catullus Fellow Posts: 213 Threads: 47 Joined: Jun 2022   06/09/2022, 04:26 AM How does one efficiently compute integer tetrations? Like how would one efficiently compute η^^16384, without having to do 16383 exponentiations? Please remember to stay hydrated. ฅ(ﾐ⚈ ﻌ ⚈ﾐ)ฅ Sincerely: Catullus /ᐠ_ ꞈ _ᐟ\ JmsNxn Ultimate Fellow Posts: 994 Threads: 117 Joined: Dec 2010 06/09/2022, 07:21 AM (06/09/2022, 04:26 AM)Catullus Wrote: How does one efficiently compute integer tetrations? Like how would one efficiently compute η^^16384, without having to do 16383 exponentiations? Hey Catullus! This is actually a very difficult and deep question. I, myself, have my own way of doing this--and there are countless papers on how do it. Integer tetrations are problematic, only in that, every coding method must produce integer tetrations. So that, every solution to $$\eta\uparrow\uparrow z$$ must produce integer tetrations. Personally, I don't think anyone knows "the fastest way", but I would wager a guess, for $$1 \le b \le \eta$$ or any $$b$$ in the Shell thron region, the Schroder method can be massaged into the fastest. If that doesn't concern you, which is fastest, there's always the beta method. The beta method is especially good for $$b$$ in the Shell-thron region, it can be slow elsewhere. Outside shell thron, the fastest way is to use Sheldon's fatou.gp. And this is a little tricky to learn how to use; there's a learning curve; but it's unreasonably fast. So, I'd suggest my own beta.gp for within the Shell thron region (so for your example of $$\eta$$), and Sheldon's fatou.gp anywhere else. Note, that it will use Kneser's solution as a derivation. My solution uses infinite compositions. Neither uses Schroder's iteration. There's definitely a learning curve to both programs, but Sheldon's is by far the better program, albeit harder to use at first. But for Shell-Thron, my program is a tad more versatile, as it allows you to create different holomorphic solutions to tetration. And for integer tetration, sheldon's I feel is a tad slower for the shell thron region. That being said, you can run either program for integer tetrations. My beta program is here: https://math.eretrandre.org/tetrationfor...p?tid=1379 And Sheldon's fatou.gp is here: https://math.eretrandre.org/tetrationfor...p?tid=1017 Note that both are written in pari-gp. This is sort of the standard on this forum. Pari GP is a C based programming language, which acts as a raw symbolic calculator. So you'll have to aquaint yourself to it to use these programs. I understand your struggle of figuring out how to use these programs, I'd suggest Sheldon's fatou.gp if you don't care too much. The documentation is much better for it. But running $$\sqrt{2}\uparrow\uparrow z$$ will be more inaccurate (Kneser's solution isn't designed for this). Integer tetrations shouldn't be a problem though, as long as you aren't worried about exact accuracy. Message me if you need help setting up pari, and understanding how to use either program to do integer tetrations. Happy to help . Catullus Fellow Posts: 213 Threads: 47 Joined: Jun 2022 06/09/2022, 08:24 AM (This post was last modified: 06/09/2022, 08:36 AM by Catullus.) (06/09/2022, 07:21 AM)JmsNxn Wrote: (06/09/2022, 04:26 AM)Catullus Wrote: How does one efficiently compute integer tetrations? Like how would one efficiently compute η^^16384, without having to do 16383 exponentiations? Hey Catullus! This is actually a very difficult and deep question. I, myself, have my own way of doing this--and there are countless papers on how do it. Integer tetrations are problematic, only in that, every coding method must produce integer tetrations. So that, every solution to $$\eta\uparrow\uparrow z$$ must produce integer tetrations. Personally, I don't think anyone knows "the fastest way", but I would wager a guess, for $$1 \le b \le \eta$$ or any $$b$$ in the Shell thron region, the Schroder method can be massaged into the fastest. If that doesn't concern you, which is fastest, there's always the beta method. The beta method is especially good for $$b$$ in the Shell-thron region, it can be slow elsewhere. Outside shell thron, the fastest way is to use Sheldon's fatou.gp. And this is a little tricky to learn how to use; there's a learning curve; but it's unreasonably fast. So, I'd suggest my own beta.gp for within the Shell thron region (so for your example of $$\eta$$), and Sheldon's fatou.gp anywhere else. Note, that it will use Kneser's solution as a derivation. My solution uses infinite compositions. Neither uses Schroder's iteration. There's definitely a learning curve to both programs, but Sheldon's is by far the better program, albeit harder to use at first. But for Shell-Thron, my program is a tad more versatile, as it allows you to create different holomorphic solutions to tetration. And for integer tetration, sheldon's I feel is a tad slower for the shell thron region. That being said, you can run either program for integer tetrations. My beta program is here: https://math.eretrandre.org/tetrationfor...p?tid=1379 And Sheldon's fatou.gp is here: https://math.eretrandre.org/tetrationfor...p?tid=1017 Note that both are written in pari-gp. This is sort of the standard on this forum. Pari GP is a C based programming language, which acts as a raw symbolic calculator. So you'll have to aquaint yourself to it to use these programs. I understand your struggle of figuring out how to use these programs, I'd suggest Sheldon's fatou.gp if you don't care too much. The documentation is much better for it. But running $$\sqrt{2}\uparrow\uparrow z$$ will be more inaccurate (Kneser's solution isn't designed for this). Integer tetrations shouldn't be a problem though, as long as you aren't worried about exact accuracy. Message me if you need help setting up pari, and understanding how to use either program to do integer tetrations. Happy to help .Thank you for helping. What about using kneser.gp? https://math.eretrandre.org/tetrationfor...hp?tid=486 I have used PARI/GP before. (And even wrote some programs in PARI/GP.) I have used fatou.gp before. I might use fatou.gp to calculate integer tetrations when the base is in the Shell-Thron region, so I do not have to download more code. Please remember to stay hydrated. ฅ(ﾐ⚈ ﻌ ⚈ﾐ)ฅ Sincerely: Catullus /ᐠ_ ꞈ _ᐟ\ JmsNxn Ultimate Fellow Posts: 994 Threads: 117 Joined: Dec 2010 06/10/2022, 08:43 PM Ya, I'd suggest fatou.gp all the way down the line. The beta.gp is really only better for making modified tetrations on Shell-Thron. Kneser.gp is an older version of fatou.gp if I'm correct. Definitely use fatou.gp Catullus Fellow Posts: 213 Threads: 47 Joined: Jun 2022 06/10/2022, 10:55 PM (06/10/2022, 08:43 PM)JmsNxn Wrote: Kneser.gp is an older version of fatou.gp if I'm correct. Definitely use fatou.gpBut kneser.gp produces more digits of precision than fatou.gp. With default settings on both. Please remember to stay hydrated. ฅ(ﾐ⚈ ﻌ ⚈ﾐ)ฅ Sincerely: Catullus /ᐠ_ ꞈ _ᐟ\ JmsNxn Ultimate Fellow Posts: 994 Threads: 117 Joined: Dec 2010 06/10/2022, 10:59 PM (06/10/2022, 10:55 PM)Catullus Wrote: (06/10/2022, 08:43 PM)JmsNxn Wrote: Kneser.gp is an older version of fatou.gp if I'm correct. Definitely use fatou.gpBut kneser.gp produces more digits of precision than fatou.gp. With default settings on both. OH shit, I've never looked at this program before. It was published later. You're probably right. Now that I think about it, I think Sheldon explained a speed up program he wrote, didn't realize this was it. I apologize. You're probably right. « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Computing Kneser's Super Logarithm, and its Analytic Continuation Catullus 2 581 07/10/2022, 04:04 AM Last Post: Catullus SAGE code for computing flow matrix for exp(z)-1 jaydfox 4 14,997 08/21/2009, 05:32 PM Last Post: jaydfox computing teh last digits without computing the number deepinlife 3 10,258 02/24/2009, 09:09 AM Last Post: deepinlife Computing Abel function at a given center jaydfox 10 22,731 11/30/2007, 06:44 PM Last Post: andydude Computing Andrew's slog solution jaydfox 16 33,218 09/20/2007, 03:53 AM Last Post: andydude

Users browsing this thread: 1 Guest(s)