Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Slog(e4)
#1
Question 
How can [Image: png.image?\dpi%7B110%7D%20\text%7Bslog%7D_xe_4] be approximated, for [Image: png.image?\dpi%7B110%7D%20x%3E\eta] in a way that becomes better and better the closer x goes to eta? What about approximating [Image: png.image?\dpi%7B110%7D%20\text%7Bslog%7D_xe]? What about approximating the third real fixed point a of [Image: png.image?\dpi%7B110%7D%20x\uparrow\uparrow%20a]? What about approximating [Image: png.image?\dpi%7B110%7D%20\lim_%7Bk\to\infty%7D\...%7D_%7Be_4%7D(k)]?
ฅ(ミ⚈ ﻌ ⚈ミ)ฅ
Please remember to stay hydrated.
Sincerely: Catullus
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
Question E^^.5 and Slog(e,.5) Catullus 7 302 07/22/2022, 02:20 AM
Last Post: MphLee
Question Slog(Exponential Factorial(x)) Catullus 19 1,176 07/13/2022, 02:38 AM
Last Post: Catullus
Question Slog(x^^^2) Catullus 1 142 07/10/2022, 04:40 AM
Last Post: JmsNxn
  A support for Andy's (P.Walker's) slog-matrix-method Gottfried 4 5,856 03/08/2021, 07:13 PM
Last Post: JmsNxn
  Some slog stuff tommy1729 15 26,824 05/14/2015, 09:25 PM
Last Post: tommy1729
  A limit exercise with Ei and slog. tommy1729 0 3,784 09/09/2014, 08:00 PM
Last Post: tommy1729
  A system of functional equations for slog(x) ? tommy1729 3 8,995 07/28/2014, 09:16 PM
Last Post: tommy1729
  slog(superfactorial(x)) = ? tommy1729 3 9,045 06/02/2014, 11:29 PM
Last Post: tommy1729
  [stuck] On the functional equation of the slog : slog(e^z) = slog(z)+1 tommy1729 1 5,040 04/28/2014, 09:23 PM
Last Post: tommy1729
  A simple yet unsolved equation for slog(z) ? tommy1729 0 3,558 04/27/2014, 08:02 PM
Last Post: tommy1729



Users browsing this thread: 1 Guest(s)