Constructing an analytic repelling Abel function JmsNxn Ultimate Fellow Posts: 993 Threads: 117 Joined: Dec 2010 07/11/2022, 10:30 PM (This post was last modified: 07/12/2022, 01:58 AM by JmsNxn.) Hey, everyone. This question is pretty simple, but I'm not sure if the answer is positive or not. My gut is saying it should be, but I'm in no way certain. Let's take an abel function $$\alpha(b,z)$$, such that $$b \in \mathcal{S}$$ the Shell-Thron region. Additionally we ask that it is a repelling iteration, so that: \begin{align} \alpha(b,\log_b(z)) &= \alpha(b,z) + 1\\ \alpha(b,F(b)) &= \infty\\ \end{align} Where $$\log|F(b)| > 1$$, and $$F(b)$$ is the repelling fixed point of the exponential $$b^z$$--$$b = F(b)^{1/F(b)}$$; attracting fixed point of $$\log_b(z)$$. Now, this Abel function is always solvable, essentially just take: $$\alpha(b,z) = \frac{\log \Psi_b(z)}{-\log \log F(b)}$$ For the Schroder function $$\Psi_b(z)$$ about the fixedpoint $$F(b)$$ of the logarithm $$\log_b(z)$$. So that, \begin{align} \alpha(b,\log_b(z)) &= \frac{\log \Psi_b(\log_b(z))}{-\log\log F(b)}\\ &= \frac{\log \left(\log F(b)^{-1}\Psi_b(z)\right)}{-\log \log F(b)}\\ &= \frac{\log\Psi_b(z)-\log \log F(b)}{-\log \log F(b)}\\ &= \alpha(b,z) + 1\\ \end{align} The question then becomes simple. Does the limit $$b \to \partial S$$ retain holomorphy in $$z$$? So as I let $$\log F(b) \to e^{i\theta}$$ for some $$\theta \in [0,2\pi)$$, does this iteration converge uniformly in $$z$$? I'd be hard pressed if this weren't the case, but I've seen crazier things happen studying tetration. Any help is greatly appreciated. This is essentially, does the repelling iteration for $$b \in (1,\eta)$$ converge to the "cheta" iteration about $$\eta$$? I know it happens in the attracting case, but I don't know about the repelling case. « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Iteration with two analytic fixed points bo198214 62 3,578 11/27/2022, 06:53 AM Last Post: JmsNxn Qs on extension of continuous iterations from analytic functs to non-analytic Leo.W 18 1,789 09/18/2022, 09:37 PM Last Post: tommy1729 Fibonacci as iteration of fractional linear function bo198214 48 3,448 09/14/2022, 08:05 AM Last Post: Gottfried Constructing a real valued Fibonacci iteration--its relation to $$1/1+z$$ JmsNxn 7 445 08/13/2022, 12:05 AM Last Post: JmsNxn Quick way to get the repelling fixed point from the attracting fixed point? JmsNxn 10 873 07/22/2022, 01:51 AM Last Post: JmsNxn Constructing Tetration as a flip on its head JmsNxn 0 191 07/14/2022, 12:30 AM Last Post: JmsNxn A related discussion on interpolation: factorial and gamma-function Gottfried 9 18,538 07/10/2022, 06:23 AM Last Post: Gottfried Is tetration analytic? Daniel 6 525 07/08/2022, 01:31 AM Last Post: JmsNxn A Holomorphic Function Asymptotic to Tetration JmsNxn 2 2,013 03/24/2021, 09:58 PM Last Post: JmsNxn Brute force tetration A_k(s) is analytic ! tommy1729 9 4,370 03/22/2021, 11:39 PM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s)