When Does \(\displaystyle\int_{-1}^0\text{sexp}(x)\,\mathrm{d}x\) Equal \(\frac12\)?
#1
Question 
With the linear approximation of tetration, \(\displaystyle\int_{-1}^0\text{sexp}(x)\,\mathrm{d}x=\frac12\).
For what complex base(s) does \(\displaystyle\int_{-1}^0\text{sexp}(x)\,\mathrm{d}x\) equal \(\frac12\) with the the analytic continuation of the Kneser method?
Also, for what complex base(s) does \(\text{sexp}(-\frac12)\) equal \(\frac12\) with the same method of tetration?
Please remember to stay hydrated.
ฅ(ミ⚈ ﻌ ⚈ミ)ฅ Sincerely: Catullus /ᐠ_ ꞈ _ᐟ\
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Revitalizing an old idea : estimated fake sexp'(x) = F3(x) tommy1729 0 624 02/27/2022, 10:17 PM
Last Post: tommy1729
  Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 3,882 09/06/2016, 04:23 PM
Last Post: tommy1729
  Can sexp(z) be periodic ?? tommy1729 2 8,249 01/14/2015, 01:19 PM
Last Post: tommy1729
  pseudo2periodic sexp. tommy1729 0 3,643 06/27/2014, 10:45 PM
Last Post: tommy1729
  [2014] tommy's theorem sexp ' (z) =/= 0 ? tommy1729 1 5,927 06/17/2014, 01:25 PM
Last Post: sheldonison
  Multiple exp^[1/2](z) by same sexp ? tommy1729 12 28,747 05/06/2014, 10:55 PM
Last Post: tommy1729
  entire function close to sexp ?? tommy1729 8 19,398 04/30/2014, 03:49 PM
Last Post: JmsNxn
  Is sexp(z) pseudounivalent for Re(z) > 0 ? tommy1729 3 7,397 03/26/2014, 01:24 PM
Last Post: tommy1729
  Vincent's theorem and sin(sexp) ? tommy1729 0 3,485 03/22/2014, 11:46 PM
Last Post: tommy1729
  sexp for base (1/e)^e ~= 0.0660? sheldonison 10 22,745 11/22/2013, 11:20 PM
Last Post: mike3



Users browsing this thread: 1 Guest(s)