When Does $$\displaystyle\int_{-1}^0\text{sexp}(x)\,\mathrm{d}x$$ Equal $$\frac12$$? Catullus Fellow Posts: 213 Threads: 47 Joined: Jun 2022   10/31/2022, 11:47 PM (This post was last modified: 12/15/2022, 12:54 AM by Catullus.) With the linear approximation of tetration, $$\displaystyle\int_{-1}^0\text{sexp}(x)\,\mathrm{d}x=\frac12$$. For what complex base(s) does $$\displaystyle\int_{-1}^0\text{sexp}(x)\,\mathrm{d}x$$ equal $$\frac12$$ with the the analytic continuation of the Kneser method? Also, for what complex base(s) does $$\text{sexp}(-\frac12)$$ equal $$\frac12$$ with the same method of tetration? Please remember to stay hydrated. ฅ(ﾐ⚈ ﻌ ⚈ﾐ)ฅ Sincerely: Catullus /ᐠ_ ꞈ _ᐟ\ « Next Oldest | Next Newest »

 Possibly Related Threads… Thread Author Replies Views Last Post Revitalizing an old idea : estimated fake sexp'(x) = F3(x) tommy1729 0 624 02/27/2022, 10:17 PM Last Post: tommy1729 Sexp redefined ? Exp^[a]( - 00 ). + question ( TPID 19 ??) tommy1729 0 3,882 09/06/2016, 04:23 PM Last Post: tommy1729 Can sexp(z) be periodic ?? tommy1729 2 8,249 01/14/2015, 01:19 PM Last Post: tommy1729 pseudo2periodic sexp. tommy1729 0 3,643 06/27/2014, 10:45 PM Last Post: tommy1729 [2014] tommy's theorem sexp ' (z) =/= 0 ? tommy1729 1 5,927 06/17/2014, 01:25 PM Last Post: sheldonison Multiple exp^[1/2](z) by same sexp ? tommy1729 12 28,747 05/06/2014, 10:55 PM Last Post: tommy1729 entire function close to sexp ?? tommy1729 8 19,399 04/30/2014, 03:49 PM Last Post: JmsNxn Is sexp(z) pseudounivalent for Re(z) > 0 ? tommy1729 3 7,397 03/26/2014, 01:24 PM Last Post: tommy1729 Vincent's theorem and sin(sexp) ? tommy1729 0 3,485 03/22/2014, 11:46 PM Last Post: tommy1729 sexp for base (1/e)^e ~= 0.0660? sheldonison 10 22,745 11/22/2013, 11:20 PM Last Post: mike3

Users browsing this thread: 1 Guest(s)