• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Taylor series of upx function sheldonison Long Time Fellow Posts: 641 Threads: 22 Joined: Oct 2008 03/05/2009, 06:48 PM Kouznetsov Wrote:There is EXACT Tailor series, if we insist that upx(z^*) = upx(z)^* and upx(z) is holomorphic outside the part of the negative part of axis, id est, holomorphic everywhere except $z\le 2$. Then the solution is unique. You can calculate so many derivatives as you like in any regular point, and, in particular, at z=0. The algorithm of evaluation is described in http://www.ils.uec.ac.jp/~dima/PAPERS/2008analuxp99.pdf Ok so far. My higher math skills aren't as good as I'd like them to be, so I'm not able to follow Dimitrii's paper. I'm looking at the pdf paper, and in section 2.1, Dimitrii writes: Quote:(1.4) F(z + 1) = exp(F(z)) .... (2.1) ln(F(z + 1)) = F(z) .... In this paper I assume that logarithm ln is single-valued function, that is analytic at the complex plane with cut along the negative part of the real axis. Then, all the solutions of equation (2.1) are solutions of (1.4), but it is not obvious, that a solution F of (1.4) satisfies also (2.1). One could add term 2$\pi$i to the right hand side of equation (2.1), and the solution of the resulting equation will be also solution of (1.4). Searching for the simple tetration, I begin with analytic solutions, which satisfy also equation (2.1). Shortly after thereafter, Dimitrii generates the value L for the critical point, but by then, I was already lost. I think the key is that in the complex plane, exp and ln, equations (1.4) and (2.1) are no longer inverses of each other, or perhaps more likely, that f(z) is an approximation function, which may not hold when adding increments of 2pi*i. Do you need the taylor series for f(z) to generate L? Is the key adding increments of 2*pi*i to the taylor series expansion for approximations of F(z)? Or does that require the contour integrals, in section (4)? - Sheldon « Next Oldest | Next Newest »

 Messages In This Thread Taylor series of upx function - by Zagreus - 09/07/2008, 10:56 AM RE: Taylor series of upx function - by bo198214 - 09/10/2008, 01:56 PM RE: Taylor series of upx function - by andydude - 10/23/2008, 10:16 PM RE: Taylor series of upx function - by Kouznetsov - 11/16/2008, 01:40 PM RE: Taylor series of upx function - by bo198214 - 11/16/2008, 07:17 PM RE: Taylor series of upx function - by sheldonison - 11/17/2008, 12:21 AM RE: Taylor series of upx function - by Kouznetsov - 11/17/2008, 04:11 AM RE: Taylor series of upx function - by bo198214 - 11/18/2008, 11:49 AM RE: Taylor series of upx function - by sheldonison - 03/05/2009, 06:48 PM RE: Taylor series of upx function - by Kouznetsov - 12/02/2008, 12:03 PM RE: Taylor series of upx function - by sheldonison - 12/03/2008, 09:11 PM RE: Taylor series of upx function - by Kouznetsov - 12/05/2008, 12:30 AM

 Possibly Related Threads... Thread Author Replies Views Last Post Perhaps a new series for log^0.5(x) Gottfried 3 679 03/21/2020, 08:28 AM Last Post: Daniel New mathematical object - hyperanalytic function arybnikov 4 1,034 01/02/2020, 01:38 AM Last Post: arybnikov Is there a function space for tetration? Chenjesu 0 661 06/23/2019, 08:24 PM Last Post: Chenjesu Degamma function Xorter 0 1,122 10/22/2018, 11:29 AM Last Post: Xorter Taylor series of i[x] Xorter 12 13,258 02/20/2018, 09:55 PM Last Post: Xorter Taylor series of cheta Xorter 13 14,329 08/28/2016, 08:52 PM Last Post: sheldonison Taylor polynomial. System of equations for the coefficients. marraco 17 18,088 08/23/2016, 11:25 AM Last Post: Gottfried Should tetration be a multivalued function? marraco 17 18,578 01/14/2016, 04:24 AM Last Post: marraco Introducing new special function : Lambert_t(z,r) tommy1729 2 3,998 01/10/2016, 06:14 PM Last Post: tommy1729 Tommy-Mandelbrot function tommy1729 0 2,175 04/21/2015, 01:02 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)