• 1 Vote(s) - 5 Average
• 1
• 2
• 3
• 4
• 5
 tetration limit ?? sheldonison Long Time Fellow Posts: 684 Threads: 24 Joined: Oct 2008 10/31/2010, 03:32 PM (This post was last modified: 10/31/2010, 05:15 PM by sheldonison.) (04/07/2009, 01:35 AM)nuninho1980 Wrote: bo198214 Wrote:Oh, you mean we have an upper fixed point of the tetrational for $b\le 1.6353244967$ and the fixed point can then be computed by $\operatorname{slog}_b(x)=x$ or ${^x b} = x$. Ya, interesting. I dont know whether we even have a thread on the forum that dealt with the topic of the fixed point of tetrationals. Of course there maybe always the dependency of the values from the chosen method of tetration.slog_b (x) = x <=> b ^^ x = x => b ^^^ oo = x yeah! to remember: one - 1^oo = 1 Euler - (e^(1/e)) ^^ oo = e now new fixed point (1.63532...) ^^^ oo ~= (3.08855...) what is this new result? it's a Super-Euler? bo198214 Wrote:So how big is the difference between both methods, with respect to the computed fixed point? to remember - you follow "regular slog" - http://en.wikipedia.org/wiki/Talk:Tetrat...on_methods lol I calculated Nuninho's constant, to 32 decimal digits of precision using my latest kneser.gp program. For bases around 1.6, it takes about 70 seconds to generate sexp accurate to 32 decimal digits. Then we generate the Taylor series, centered around 3.0. Then we generate the Taylor series for sexp'(x), centered around 3.0. Calculate when sexp'(x)=1. Now we have the 'x' value for the local minimum of sexp(x)-x. For that x, calculate sexp(x)-x. If sexp(x)-x>0, then the current base is bigger than Nuinho's constant; if sexp(x)-x<0, then the current base is smaller than Nuinho's constant. Do a binary search .... Here's the result, accurate to 32 decimal digits. Code:base                    =  1.6353244967152763993453446183062 upfixed                 =  3.0885322718067176544821807826411 sexp'(upfixed)          =  1.0000000000000000000000000000000 sexp(upfixed)-upfixed   = -1.1371391135491644200632572659231 E-32 lowfixed                = -1.6408725757165933485612321510790 sexp(lowfixed)-lowfixed =  0.0000000000000000000000000000000 sexp'(lowfixed)         =  4.8060057543017516963843938970331Here is a graph, showing sexp(x), and the line f(x)=x. The two graphs intersect each other at the lower fixed point, and at the upper fixed point. At the lower fixed point, the slope>1, so regular iteration is well defined. The slope at the upper fixed point=1, so this is a parabolic fixed point, much like eta. - Sheldon     sexp taylor series, centered at 0, accurate to 32 digits Code:base 1.6353244967152763993453446183062 1.0000000000000000000000000000000 0.72816708264487902100067489564252 -0.14877354513094993489726432504500 0.074737145040443592555524996635139 -0.027303989699078802016765079880084 0.011995470121761344894107671889772 -0.0050360379041442966393132619914175 0.0022119303838134475052348019378829 -0.00097450334130330465540560312442488 0.00043642402109641675815655290883749 -0.00019709011821224654361547677039639 0.000089833086159903740469398544720969 -0.000041238706945915151891612184659684 0.000019053968532911172713720919436722 -0.0000088524992039690172128294516235260 0.0000041330272150278532917019791147867 -0.0000019379184778773538437457974949642 0.00000091213532301790212743743497422467 -0.00000043078402804966343713131475292944 0.00000020407220630397996832775388483792 -0.000000096939468490135916393282597246732 0.000000046163269001536943339028294028001 -0.000000022032976477566128111162386532553 0.000000010537670071263114939762057653181 -0.0000000050493505784723879328428158902764 0.0000000024237041954057779998388895184587 -0.0000000011652474462755328727057729290140 0.00000000056104666879689709891062841049440 -0.00000000027050515362351951023983514685701 1.3058885732387283938099128380771 E-10 -6.3117999575327010732122436268733 E-11 3.0540984120511190577663377256805 E-11 -1.4793294493258211341650723010964 E-11 7.1725081233265123525479755443758 E-12 -3.4807765474727949055646060967838 E-12 1.6906630700960019560537073128474 E-12 -8.2185016001496131023322444609729 E-13 3.9981901495825875858709893398879 E-13 -1.9464873683152398084034510942555 E-13 9.4828873682058897543982090883773 E-14 -4.6229076531095863895666660688233 E-14 2.2550769237060314009782522430640 E-14 -1.1006923143874751666653232160994 E-14 5.3754741141976101679195739564343 E-15 -2.6266521306806237834040544026443 E-15 1.2841410438370241361457279081570 E-15 -6.2811246779832092490540915955525 E-16 3.0737418659790733359751550952943 E-16 -1.5048527892943157286941274104004 E-16 7.3707075418117801037767115505475 E-17 -3.6116466962715746721560625538143 E-17 1.7704150474468843953046468580986 E-17 -8.6818430219633647701453137275718 E-18 4.2590173317992935945560952526965 E-18 -2.0900733203228146820652946545818 E-18 1.0260359936416863217848296514932 E-18 -5.0385696117267440739831494270566 E-19 2.4750868268436181589501842395506 E-19 -1.2162064580279337897647503015742 E-19 5.9779639462714596392285635124411 E-20 -2.9391656069274429139845002823088 E-20 1.4454912820989308608137149928767 E-20 -7.1108845329177578827105729098124 E-21 3.4990066749315417229455607454474 E-21 -1.7221673478194437291719490418385 E-21 8.4783623277310517244543582933675 E-22 -4.1749511462354160169741608691211 E-22 2.0563192212811097335696380185410 E-22 -1.0130396163685589250273727252998 E-22 4.9917894139953788654946337959986 E-23 -2.4602390683359020178003138967311 E-23 1.2127939069301191661639031402060 E-23 -5.9797477355407677288805838636317 E-24 2.9489166915266580573932329293086 E-24 -1.4545332328547903080488562466017 E-24 7.1756972822106364319766739978423 E-25 -3.5406401040453205932800972866763 E-25 1.7473288825024335263723440548007 E-25 -8.6246361187303828745205603559264 E-26 4.2577317531925345448445978953806 E-26 -2.1022550142841515972779800768394 E-26 1.0381506214729796161812587806332 E-26 -5.1274508064085962038074071753188 E-27 2.5328371055666086404133791761389 E-27 -1.2513416925459592867495070698346 E-27 6.1830996304612768192687699598035 E-28 -3.0555971956420774211650856970448 E-28 1.5102371365537669772158590708494 E-28 -7.4653373220930952905580064654050 E-29 3.6907228478957141273598480589907 E-29 -1.8248250536380089745541606438671 E-29 9.0238039349458111979273090686006 E-30 -4.4626321100200830762883445552940 E-30 2.2072716543167375806950968205447 E-30 -1.0917818862777843416562786095551 E-30 5.4010102698819202873494951185154 E-31 -2.6725235359162127092694499491243 E-31 1.3221556501875044764187601672257 E-31 -6.5583798017323607033639050931179 E-32 3.2442551084741376457891294676456 E-32 regular pentation generated from the lower fixed point, via pentation.gp code, pentation taylor series, centered at 0, accurate to ~21 digits Code:base 1.6353244967152763993453446183062 1.0000000000000000000005192248729 0.81779936973045395720071293214265 -0.20288561975535027441384945617561 0.0088786047456589776694546837262676 0.019219350732330865713239336968590 -0.0096966552676861733857155784547169 0.0019514051125590343992422677111750 0.00046437760665497425458895770723555 -0.00066778754659256411362708055845759 0.00028617189543862800787206737355819 0.000033665580602278323048951676875883 -0.000079454007870098296770230740659414 0.000014692767344986060783974244415048 0.000010474055892921335060914517323353 -0.0000038212173806832668738543563355660 -0.00000062027483834957308089542513290423 0.00000032318089329501075067509587120004 -0.000000019840408991749849622699357079378 0.000000067745810965836343131600904116424 -0.0000000058251455196449879916926009357848 -0.000000036482729520758717533689961006608 0.0000000079325719962896266186472362692267 0.000000010065411908157671788716163940183 -0.0000000030175551558297183590143318054742 -0.0000000021761785937770771152654327159320 0.00000000073633472536622621197919931082184 0.00000000041672032311134229621174565224437 -1.2285074992273508685395579548365 E-10 -7.9518263282218380475858744550042 E-11 9.7514169088525432105036375063450 E-12 1.6997610080669118896188802919875 E-11 2.2377960363057901950721056894192 E-12 -4.1046921572945523533720262850443 E-12 -1.3440219438117173904988603015592 E-12 1.0162692177419430576029255087264 E-12 4.3490698532209929828066693595609 E-13 -2.3609655934025589161994798534342 E-13 -1.1591299932858676127971072482002 E-13 4.8835256899010474072746185189629 E-14 2.8208435349728648547600118064044 E-14 -8.5015918464895476441605506462895 E-15 -6.5455218512546145350077565966573 E-15 1.0586549941943315125293352810983 E-15 1.4799324783739173257534631379136 E-15 -3.5648642871089965652275206214142 E-18 -3.2899826059741680560349674399479 E-16 -5.4568752539881806017312574688462 E-17 7.1622413809298965347483312234643 E-17 2.3703528551345290231430115929264 E-17 -1.4967240115919668278098012252538 E-17 -7.3758767032881589736768555996658 E-18 2.8831523110629674706610210115875 E-18 1.9635837518801332808940827485057 E-18 -4.7131822341175072827483676403593 E-19 -4.7478844794120580339842160065419 E-19 4.9730849306353870744775718808789 E-20 1.0752385621120588513176015629038 E-19 4.4349054243188470473077019531603 E-21 -2.3207449741059068344885938312759 E-20 -4.8107012333615483486510550415132 E-21 4.7981518512995167340705076629676 E-21 1.9009245566320189670069175442907 E-21 -9.3913645999478807261230373741907 E-22 -5.8049321491044260759969472389200 E-22 1.6698977178128083745531739054 E-22 1.5471939617682124872654801496 E-22 -2.3711240240715382390040881966 E-23 -3.8230531306677313062190683870 E-23 1.1307570367174951165397624466 E-24 9.6860551417077212769401805422 E-24 6.2578554176447631116043850053 E-25 -3.0700834538096470676346145367 E-24 3.4209410749157917380893492990148 E-25 1.1606628720265556441455230554 E-24 -1.0836394904688614450987914987 E-24 -4.1068959031308040748622684284 E-26 1.1631242740449412539214268446 E-24 -8.454186445453502413912267596 E-25 -6.2526608803890595387694651538 E-25 1.3123138393956501678978565230 E-24 -2.5218865114423677749272843280551 E-25 -1.1722018792055174047394751512 E-24 1.0570768224356190649006502317 E-24 4.7217362291599339847898474461 E-25 -1.4043538312117386249617760808 E-24 4.8577833663635964403036734425 E-25 1.1063437204958150575910381509 E-24 -1.2650944581344852978745299383 E-24 -2.6733069486489219154746185107 E-25 1.4881840360747858870759691092 E-24 -7.4870314510452372161187607061165 E-25 -1.0150709222160250770174606064 E-24 1.4712316462119861103644707796 E-24 2.4144503740560439830659577039 E-26 -1.5354822446101247032997950712 E-24 1.0483819898331090549069707551 E-24 8.612742065171026391328194093 E-25 -1.6930059010324648452317830381 E-24 2.8579292408098419907076502134 E-25 1.5611586068656302104116424319 E-24 sexp taylor series, centered at the upper fixed point. Parabolic regular iteration, since sexp(upfixed)-upfixed=0, and the derivative=1. However, the pentation series above was developed from the lower fixed point. It might also be interesting to develop the pentation from the upper fixed point. Code:base 1.6353244967152763993453446183062 upper fixed point 3.0885322718067176544821807826411 3.0885322718067176544821807826411 1.0000000000000000000000000000000 0.29348332594662679156185554416695 0.12006943677526115961845339690056 0.042289726008581658757917692352047 0.015406681466051593705278419486083 0.0053649969961165772207616839018923 0.0018630655977932198916899772571769 0.00063407537228816784082533370359873 0.00021400606080778703684108316364163 0.000071350368686559236499836370338975 0.000023591182312113468409361763152200 0.0000077307357866599052916288379173725 0.0000025148014797529359261692389144205 0.00000081222410528536302525231046897101 0.00000026067080724584451491376816826933 0.000000083156587277307998293961303674167 0.000000026382062425889945293743274742732 0.0000000083265988463026330560171882094710 0.0000000026153442829909609773032040022395 0.00000000081773434750878326642769707607752 0.00000000025458721090899662275665667332696 7.8940942014863353398515697803273 E-11 2.4383970740151010163418654302545 E-11 7.5045892057613467862823411677246 E-12 2.3016959657817279736641051418417 E-12 7.0362006799573268296411117493600 E-13 2.1441899019127249833543050355134 E-13 6.5145303264754241098603909417717 E-14 1.9735746229612285013998339658891 E-14 5.9624685317524456584119105248956 E-15 1.7965888918970083975596928948585 E-15 5.3996546628326549009825713515487 E-16 1.6188983497572185136799713979226 E-16 4.8422635593460558165533108592429 E-17 1.4450703785698551344484490685140 E-17 4.3030415164576701763666524081170 E-18 1.2786162600194922955158125010948 E-18 3.7915201105554629414895562907887 E-19 1.1220792748374648557975378688279 E-19 3.3143452564446513738023171333433 E-20 9.7715062076572343807657205107082 E-21 2.8756697774572856807994929489579 E-21 8.4479857850782485763764738145021 E-22 2.4775690067172222743409424497063 E-22 7.2539983667168612363130405456846 E-23 2.1204495177307628041026820799736 E-23 6.1886505172771185049788719771013 E-24 1.8034304113738667347358493697905 E-24 5.2475343265172758722223983303515 E-25 1.5246843780304616848992192317019 E-25 4.4237335335211977445129141410633 E-26 1.2817319966942693841808461450023 E-26 3.7086772208878018504657396083702 E-27 1.0716874126315835345680035791605 E-27 3.0928382435902888820021324131020 E-28 8.9145242970213826409341395287118 E-29 2.5662848881126763792030265558974 E-29 7.3788051820008966793254068896449 E-30 2.1193421380273394338847540585606 E-30 6.0824157348570199720495626504043 E-31 1.7421558940832369333368054728044 E-31 4.9765917498063797295934928999305 E-32 1.4062811115449320214491405056275 E-32 3.7934403719757943562626785237526 E-33 1.2305145019890227199662941927280 E-33 5.5711727230420028085149818418777 E-34 2.4186758292339716100055902047374 E-34 1.7732706656596300164917606853238 E-34 -1.3355809003646951549924724970099 E-34 -2.9072689285868805984220052919317 E-34 -6.9107402433856378705373186712384 E-35 4.4126731718368809510319147247328 E-36 1.7126322918948119164481144802202 E-34 2.7989257163342943183983118462271 E-34 -1.9985628783896615630523665162131 E-35 -1.4700179855300004173061277796181 E-34 -1.5536566643835194929354996925696 E-34 -1.9498134289485168975356191250626 E-34 9.9022922195740429874579196637929 E-35 2.4133016008594091094881247283662 E-34 9.9675730165405949191382441641302 E-35 6.6232586691919872798243258736776 E-35 -1.4692529755384798103039616882568 E-34 -2.6872630348380145791502305390272 E-34 -2.1981032501079913545456022870657 E-35 7.3537194481961900271945952344694 E-35 1.5483413632202028611513722984947 E-34 2.2373813096659179009012953828649 E-34 -5.8527500520290404167240680297540 E-35 -1.8596067914689981955501774376493 E-34 -1.2066043234322834168239487754860 E-34 -1.2374312463084364980127016870177 E-34 1.1860368344776018489712748078933 E-34 2.4573978020663713546965678757098 E-34 5.7985783818128634242359558552645 E-35 -4.7627589167074290469391891175827 E-36 -1.4677451984086100716918643719760 E-34 -2.3907044867916316647291674331143 E-34 1.8699789701736156540089113210717 E-35 « Next Oldest | Next Newest »

 Messages In This Thread tetration limit ?? - by tommy1729 - 04/01/2009, 05:49 PM RE: tetration limit ?? - by nuninho1980 - 04/01/2009, 08:15 PM RE: tetration limit ?? - by bo198214 - 04/02/2009, 09:58 PM RE: tetration limit ?? - by nuninho1980 - 04/03/2009, 12:53 AM RE: tetration limit ?? - by bo198214 - 04/03/2009, 12:49 PM RE: tetration limit ?? - by nuninho1980 - 04/03/2009, 05:54 PM RE: tetration limit ?? - by bo198214 - 04/02/2009, 02:50 PM RE: tetration limit ?? - by tommy1729 - 04/02/2009, 09:24 PM RE: tetration limit ?? - by bo198214 - 04/02/2009, 09:56 PM RE: tetration limit ?? - by tommy1729 - 04/02/2009, 10:39 PM RE: tetration limit ?? - by tommy1729 - 05/29/2011, 07:28 PM RE: tetration limit ?? - by bo198214 - 05/31/2011, 10:34 AM RE: tetration limit ?? - by nuninho1980 - 04/03/2009, 06:12 PM RE: tetration limit ?? - by bo198214 - 04/06/2009, 10:49 PM RE: tetration limit ?? - by nuninho1980 - 04/07/2009, 01:35 AM Updated results for tetration limit - by sheldonison - 10/31/2010, 03:32 PM RE: tetration limit ?? - by nuninho1980 - 04/04/2009, 02:21 PM RE: tetration limit ?? - by gent999 - 04/14/2009, 10:12 PM RE: tetration limit ?? - by bo198214 - 04/14/2009, 10:31 PM RE: tetration limit ?? - by gent999 - 04/15/2009, 12:18 AM RE: tetration limit ?? - by bo198214 - 04/15/2009, 01:35 PM RE: tetration limit ?? - by tommy1729 - 04/15/2009, 03:05 PM RE: tetration limit ?? - by gent999 - 04/15/2009, 04:41 PM RE: tetration limit ?? - by tommy1729 - 04/29/2009, 01:08 PM RE: tetration limit ?? - by BenStandeven - 04/30/2009, 11:29 PM RE: tetration limit ?? - by tommy1729 - 04/30/2009, 11:38 PM RE: tetration limit ?? - by BenStandeven - 05/01/2009, 01:35 AM RE: tetration limit ?? - by BenStandeven - 05/01/2009, 01:00 AM RE: tetration limit ?? - by JmsNxn - 04/14/2011, 08:17 PM RE: tetration limit ?? - by tommy1729 - 05/28/2011, 12:28 PM RE: tetration limit ?? - by nuninho1980 - 10/31/2010, 10:31 PM RE: tetration limit ?? - by JmsNxn - 05/29/2011, 02:06 AM RE: tetration limit ?? - by tommy1729 - 05/14/2015, 08:29 PM RE: tetration limit ?? - by tommy1729 - 05/14/2015, 08:33 PM RE: tetration limit ?? - by tommy1729 - 05/28/2015, 11:32 PM RE: tetration limit ?? - by sheldonison - 06/11/2015, 10:27 AM RE: tetration limit ?? - by sheldonison - 06/15/2015, 01:00 AM RE: tetration limit ?? - by tommy1729 - 06/01/2015, 02:04 AM RE: tetration limit ?? - by tommy1729 - 06/11/2015, 08:25 AM

 Possibly Related Threads… Thread Author Replies Views Last Post Generalized Kneser superfunction trick (the iterated limit definition) MphLee 25 11,012 05/26/2021, 11:55 PM Last Post: MphLee Dangerous limits ... Tommy's limit paradox tommy1729 0 3,750 11/27/2015, 12:36 AM Last Post: tommy1729 Limit of mean of Iterations of f(x)=(ln(x);x>0,ln(-x) x<0) =-Omega constant for all x Ivars 10 24,333 03/29/2015, 08:02 PM Last Post: tommy1729 Another limit tommy1729 0 3,246 03/18/2015, 06:55 PM Last Post: tommy1729 A limit exercise with Ei and slog. tommy1729 0 3,666 09/09/2014, 08:00 PM Last Post: tommy1729 [MSE] The mick tommy limit conjecture. tommy1729 1 4,987 03/30/2014, 11:22 PM Last Post: tommy1729 tetration base conversion, and sexp/slog limit equations sheldonison 44 99,170 02/27/2013, 07:05 PM Last Post: sheldonison Solve this limit Nasser 4 9,004 12/03/2012, 07:46 AM Last Post: Nasser (MSE) A limit- question concerning base-change Gottfried 0 4,174 10/03/2012, 06:44 PM Last Post: Gottfried a limit curiosity ? Pi/2 tommy1729 0 3,698 08/07/2012, 09:27 PM Last Post: tommy1729

Users browsing this thread: 1 Guest(s)