Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Cheta with base-change: preliminary results
#18
(08/12/2009, 03:47 PM)Gottfried Wrote:
(08/12/2009, 02:29 PM)jaydfox Wrote: Actually, since I'm trying to find the Taylor series, I don't worry about the factorials. So I work directly with the matrix above, where the first row is [1 -2 4 -8 16].

Inverting this and multiplying by 4!, or (n-1)! in general, I get back a matrix of integer coefficients. For this 5x5 matrix, I get:
Code:
[  0   0  24   0   0]
[  2 -16   0  16  -2]
[ -1  16 -30  16  -1]
[ -2   4   0  -4   2]
[  1  -4   6  -4   1]

Yes, exactly that's wat XI is for.
Using
Code:
´
  dim=5
  ScI = XI *FacI*PI *(dim-1)!
I get ScI (= Sc^-1 without general matrix-inversion!)
Code:
´
   0    0   24   0   0
   2  -16    0  16  -2
  -1   16  -30  16  -1
  -2    4    0  -4   2
   1   -4    6  -4   1
Yes, this is it! This is much faster than what I was using before!
~ Jay Daniel Fox
Reply


Messages In This Thread
RE: Cheta with base-change: preliminary results - by jaydfox - 08/12/2009, 04:49 PM



Users browsing this thread: 1 Guest(s)