Posts: 768
Threads: 120
Joined: Aug 2007
02/04/2010, 05:08 PM
(This post was last modified: 02/04/2010, 05:27 PM by Gottfried.)
Hi 
using the notation and we do arithmetic in the height (or "iteration") parameter like
What about infinite series instead of a sum?
If we have a sufficient method for continuous tetration, then, for instance we should get
For "nice" bases 1<= b <=ß (= exp(exp(1)) ) we should get even more; I don't see any reason, why the series in the heightparameter should not be allowed to diverge.
So, with base b=sqrt(2) the following expression
seems to make sense to me because the partial evaluations converge to y=2 , for instance if we choose x_0 = 1.
On the other hand, the analytical continuation for the geometric series with constant quotient q at q=2 gives
But substitued this into the heightparameter then we should also have
where we see a contradiction.
So it seems to me that tetration can restrict the validity/rangeofusability of analytic continuation (if we do not have another explanation/notion/wayofhandling of such effects).

In a second view, this extends to other functions similarly. We have another inequality if a divergent series is used in the exponent of the powerfunction, for instance, to base e:
Just another plot of meditations... <phew>
Gottfried
Gottfried Helms, Kassel
Posts: 1,389
Threads: 90
Joined: Aug 2007
Posts: 768
Threads: 120
Joined: Aug 2007
02/05/2010, 10:23 AM
(This post was last modified: 02/05/2010, 10:47 AM by Gottfried.)
(02/04/2010, 10:01 PM)bo198214 Wrote: Well, the equality 1 + 2 + 4 + 8 + ... = 1, is very fragile if you want to take it as a serious argument. It doesnt surprise me that you dont get the result you expect. Well ... "fragility"...., a bit informal.
What I'm trying is to improve my general understanding of infinite series and especially that of divergent series (well in the context of iteration and tetration). Perhaps I went too far, in that I (unconsciously) moved nearer and nearer to a notion of "whenever a sum for a divergent series can be established (for instance by cesarosum), we can use that value in the instance of the series".
That's obviously a false mental notion  although it is suggestive and is working in many cases. (*1)
Perhaps a step towards a better understanding is the following consideration.
Assume the sequence of partial sums of some divergent series a0+a1+a2+... or even better, using some limit notation like
f(x) = a0+a1 x + a2 x^2 + ... for x>1()
Then for some divergent series we take the mean of the sequence of partial sums, if that converges.
But in my two examples we deal (with the limit of) functions of the partial sums and the condition "...if that converges..." must be extended to the additional condition "...if the sequence of functionevaluations of the partial sums converge..." or something like. (*2)
Hmm. I think to proceed here I should do some examples, where the functionevaluations converge and some, where they don't ...
Gottfried
(*1) I'm proudly linking to my own solution for the summation of 0!1!+2!3!... in eulerianmatrix chap 3.2
[update]
(*2) well, again in a second thought: I was actually thinking about that, when I posted this whole problem: we see, that the tretrationfunction even provides this convergence of sequence of functionevaluations. And still this is not enough to guarantee the usability of the "value" of the divergent series...
[/update]
Gottfried Helms, Kassel
Posts: 1,389
Threads: 90
Joined: Aug 2007
(02/05/2010, 10:23 AM)Gottfried Wrote: (02/04/2010, 10:01 PM)bo198214 Wrote: Well, the equality 1 + 2 + 4 + 8 + ... = 1, is very fragile if you want to take it as a serious argument. It doesnt surprise me that you dont get the result you expect. Well ... "fragility"...., a bit informal.
Well I can also say *false*. Just wanted to pay respect that it miraculously works in several cases.
Quote:What I'm trying is to improve my general understanding of infinite series and especially that of divergent series (well in the context of iteration and tetration). Perhaps I went too far, in that I (unconsciously) moved nearer and nearer to a notion of "whenever a sum for a divergent series can be established (for instance by cesarosum), we can use that value in the instance of the series".
And this is the reason why I always avoided with alternate summability techniques in theoretical matter.
There is a well established theory about *usual* powerseries. They have a convergence radius, inside they always converge outside they always diverge.
If you now assign values also to the outside by some summation technique, its like you dont know what you do. It *can* have interesting results, but it may also fail, often it just lacks the theoretical base; though I admit it gives surprising results. But you never can use it as a serious argument e.g. in a proof; its fragile.
My understanding of assigning values outside the convergence radius is that of analytic continuation:
You have a powerseries e.g. 1+z+z^2+. It does not converge for z>1. This is due to a (n isolated) singularity at z=1. But of course it can be continued along a path from 0 to 2 avoiding 1. The powerseries is the development of 1/(1z) at 0 and so we know the value at 2, it is 1.
In the case of nonisolated singularities, e.g. branch points, there may be different values (branches) that may be obtained by continuation. Different summation methods may then return different values.
In general a sum s_0 + s_1 + .... may be considered to be the continuation of a powerseries at some point to some point outside or on the boundary of the convergence disk.
More generally I think summation techniques just distort the region of convergence from a disk (powerseries) to some other shape (see e.g. the thread about the MittagLeffler star, this is also a resummation and has as its domain of convergence the whole plane without the rays going from singularaties outward (roughly spoken)).
Quote:But in my two examples we deal (with the limit of) functions of the partial sums and the condition "...if that converges..." must be extended to the additional condition "...if the sequence of functionevaluations of the partial sums converge..." or something like. (*2)
In your example you just obtain another inequality which you already get if not considered as iteration exponents.
Quote:(*1) I'm proudly linking to my own solution for the summation of 0!1!+2!3!... in eulerianmatrix chap 3.2
Seems matrix method is quite potent to sum everthing
Posts: 768
Threads: 120
Joined: Aug 2007
02/05/2010, 04:19 PM
(This post was last modified: 02/05/2010, 04:39 PM by Gottfried.)
(02/05/2010, 12:31 PM)bo198214 Wrote: Quote:(*1) I'm proudly linking to my own solution for the summation of 0!1!+2!3!... in eulerianmatrix chap 3.2
Seems matrix method is quite potent to sum everthing
 unfortunately not... That was subject to a very recent post to sci.math, where I asked, whether there is a known limit for the summationpower of triangular matrices for matrixbased transform & summation. I didn't find a possibility for a more powerful matrix and suppose, that such a limit might already be known.
Well, back to the main subject. Surely, the series 1+2+4+8+... is a "fragile" or let's say, basing arguments on it is fragile. I chose that only because of its simple occurence. Generally I think, it should be allowed to formulate the iteration parameter as a series, and also as a powerseries in x, for instance
and then discuss the limiting behaviour, when abs(x)>1() . One of the reasons, that the summation 11+11+... made it into serious math, and was accepted to be identified with the value 1/2 was the discussion of the form of g(x) = 1+x+x^2+... for x=1, the form of the geometric series, its translation into the closed form 1/(1x) and finally the method of analytical continuation.
But can we identify the above f(1) with using the rationale of evaluation using the partial sums?
Would be interesting, whether this makes sense, anyway ...
So do we deny the validity of divergent summation in the heightparameter completely? Then we should do it also explicitely, for instance also in a remark in wikipedia or other onlineresources.
But I think, that were a step too early.
[Update] a) What would we do in cases, where the heightparameter is expressed as zetaseries. Zetaregularization is a well established procedere. Does it produce contradictions if inserted in the heightparameter in tetration (or other iterated functions) ?[/update]
b) We should in general look, whether there are possibilities, where divergence/summation keeps a sensical result, or if the contrary occurs, and we cannot find any such meaningful result, then we should try to explain, why the consideration near the limit can*not* be extended beyond (or some wording like "analytical continuation makes no sense here")
Hmm, perhaps I'd look for opinions in sci.math, too...
Gottfried
Gottfried Helms, Kassel
Posts: 1,389
Threads: 90
Joined: Aug 2007
02/05/2010, 06:45 PM
(This post was last modified: 02/05/2010, 06:46 PM by bo198214.)
(02/05/2010, 04:19 PM)Gottfried Wrote: Well, back to the main subject. Surely, the series 1+2+4+8+... is a "fragile" or let's say, basing arguments on it is fragile. I chose that only because of its simple occurence. Generally I think, it should be allowed to formulate the iteration parameter as a series, and also as a powerseries in x, for instance
and then discuss the limiting behaviour, when abs(x)>1() .
Of course it is allowed. In this context a series would be considered as a sequence, the sequence of the partial sums; and a good continuous iteration of a function should be continuous in the exponent, i.e.
.
But the partial sums of 1+2+4+8+... as well as the partial sums of 11+11... diverge.
At most one could say that the partial sums of 1+2+4+8+... converge to oo (e.g. in the topology of the complex sphere convergance to infinity has a well defined meaning.)
So by continuity of the iteration exponent, one would expect
and one would expect
to diverge.
Which is indeed the case.
If you choose the partial sums differently, e.g. by calculating the mean or so then perhaps 11+11... converges to 1/2 and so this would happen if raised to the iteration exponent (in which case you however would lose the integer exponents).
Quote:One of the reasons, that the summation 11+11+... made it into serious math, and was accepted to be identified with the value 1/2.
This is not true. The partial sums of 11+11... do not converge, the series is divergent. Whether Euler wrote something different in his time is another thing. Calculus wasnt so precise at this time, and in a *certain way* it makes sense to assign the value 1/2, but in the default meaning of what every freshman learns in the first analysis course about series it is provably wrong, false, not true, incorrect, ...
Quote:[Update] a) What would we do in cases, where the heightparameter is expressed as zetaseries. Zetaregularization is a well established procedere. Does it produce contradictions if inserted in the heightparameter in tetration (or other iterated functions) ?[/update]
b) We should in general look, whether there are possibilities, where divergence/summation keeps a sensical result, or if the contrary occurs, and we cannot find any such meaningful result, then we should try to explain, why the consideration near the limit can*not* be extended beyond (or some wording like "analytical continuation makes no sense here")
There is nothing special about taking limits in the iteration exponent, if you take any continuous function h, the same thing occurs:
h(1+2+4+...)=h(oo)
h(11+11+...) diverges
but sequences of integer numbers never have noninteger numbers as limit.
Posts: 768
Threads: 120
Joined: Aug 2007
Hmm, some points come out clearer now.
What I want is not sort of legimitation for this or that but of understanding. I'm ok, if it comes out that we must dismiss any sort of divergent summation in the iteration parameter of functions. What I want is: is this necessary? Are there exceptions?
If this is a general property, I also want, that we add some remark to our interpretation of tetration: "no divergent series in iteration parameter"  be it in opentext collections like wikipedia or in journals.
Since it seems, that is a more general property, I'd like to see this also in articles about summation of divergent series: "that concept is limited to <...something...>" and "not meaningful for <...example:iteration of functions...> " (I need not Euler to assign a fairly general availability of divergent summation  K.Knopp and G.H.Hardy have even dedicated monographies (or monographiclike chapters) to that concept  without mentioning circumstances, where it is *generally* not applicable)
But well, let's see. I think I'll do some more examples first, to improve my own understanding. I'll reply to this all later again.
Gottfried
Gottfried Helms, Kassel
Posts: 1,389
Threads: 90
Joined: Aug 2007
(02/05/2010, 10:10 PM)Gottfried Wrote: If this is a general property, I also want, that we add some remark to our interpretation of tetration: "no divergent series in iteration parameter"  be it in opentext collections like wikipedia or in journals.
No, thats not the way it goes. 1+2+4+... = 1 is false in the normal sense of the limit; if it is despite useful in certain circumstances this needs to be mentioned and not the opposite that it is not useful here.
So if you find a certain way to use summation methods in the iteration exponent and getting interesting results  great, but nobody would expect that it works by default.
Quote:(I need not Euler to assign a fairly general availability of divergent summation  K.Knopp and G.H.Hardy have even dedicated monographies (or monographiclike chapters) to that concept  without mentioning circumstances, where it is *generally* not applicable)
I didnt read such a monograph, but I can not imagine (from what I read by Hardy or Knopp) that they write something that is formally false, like 1+2+4+...=1.
One term from analysis is for example "absolutely convergent", where you can reorder the summands in any way without affecting the limit. But nonabsolutely convergent series is still a convergent series but the limit (of the partial sums) may depend on reordering. Here we not even work with divergent series, and we use no complicated summation method but just reorder the terms  but despite they give different limits. Taking this further you could prove that every number is equal to any other number.
