• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Recurring digits Daniel Fellow Posts: 91 Threads: 33 Joined: Aug 2007 08/30/2007, 10:03 PM For the Ackermann function with $n \ge 10$ and $k \ge 2$: $2 \rightarrow n \rightarrow k \equiv 2948736 \; (mod \; 10^7)$ $3 \rightarrow n \rightarrow k \equiv 4195387 \; (mod \; 10^7)$ $4 \rightarrow n \rightarrow k \equiv 1728896 \; (mod \; 10^7)$ $5 \rightarrow n \rightarrow k \equiv 8203125 \; (mod \; 10^7)$ $6 \rightarrow n \rightarrow k \equiv 7238656 \; (mod \; 10^7)$ $7 \rightarrow n \rightarrow k \equiv 5172343 \; (mod \; 10^7)$ $8 \rightarrow n \rightarrow k \equiv 5225856 \; (mod \; 10^7)$ $9 \rightarrow n \rightarrow k \equiv 2745289 \; (mod \; 10^7)$ $11 \rightarrow n \rightarrow k \equiv 2666611 \; (mod \; 10^7)$ $12 \rightarrow n \rightarrow k \equiv 4012416 \; (mod \; 10^7)$ $13 \rightarrow n \rightarrow k \equiv 5045053 \; (mod \; 10^7)$ $14 \rightarrow n \rightarrow k \equiv 7502336 \; (mod \; 10^7)$ $15 \rightarrow n \rightarrow k \equiv 859375 \; (mod \; 10^7)$ $16 \rightarrow n \rightarrow k \equiv 415616 \; (mod \; 10^7)$ $17 \rightarrow n \rightarrow k \equiv 85777 \; (mod \; 10^7)$ $18 \rightarrow n \rightarrow k \equiv 4315776 \; (mod \; 10^7)$ $19 \rightarrow n \rightarrow k \equiv 9963179 \; (mod \; 10^7)$ bo198214 Administrator Posts: 1,395 Threads: 91 Joined: Aug 2007 03/21/2009, 01:08 PM (This post was last modified: 03/21/2009, 05:07 PM by bo198214.) Perhaps this article provides a proof: Blakley, G. R.; Borosh, I. Modular arithmetic of iterated powers. Comput. Math. Appl. 9 (1983), no. 4, 567--581. Review of Zentralblatt: http://www.zentralblatt-math.org/zmath/e...t=complete « Next Oldest | Next Newest »

 Possibly Related Threads... Thread Author Replies Views Last Post Repetition of the last digits of a tetration of generic base Luknik 12 1,725 12/16/2021, 12:26 AM Last Post: marcokrt

Users browsing this thread: 1 Guest(s)