• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Elliptic Superfunctions BenStandeven Junior Fellow Posts: 27 Threads: 3 Joined: Apr 2009 08/17/2010, 05:39 AM From the double-angle formulas for the Jacobi elliptic functions: $ cn(2x) = {\frac{cn(x)^2 - sn(x)^2 dn(x)^2} {1 - k^2 sn(x)^4}}, sn(2x) = {{2 sn(x)cn(x)dn(x)}\over{1 - k^2 sn(x)^4}}, dn(2x) = {{dn(x)^2 - k^2 (sn(x)^2 cn(x)^2)}\over{1 - k^2 sn(x)^4}}$, we can get superfunctions to other rational functions. For example, $cn(2^n)$, if my computations are correct, is the superfunction for: $ f(z) = {{k - 1 + (2 - 2k) z^2 + k z^4}\over{1 - k^2 + 2 k^2 z^2 - k^2 z^4}} $, or $ f(z) = \frac{$$z^2 - \frac{k+1}{k} + \frac{sqrt(1-k)}{k}$$$$z^2 - \frac{k+1}{k} - \frac{sqrt(1-k)}{k}$$}{-k$$z^2 - \frac{k+1}{k}$$$$z^2 - \frac{k-1}{k}$$}$. So for example, picking the modulus to be k=-3, we would get: $f(z) = \frac{z^2}{3$$z^2 - \frac{2}{3}$$}$. This means that $nc(2^n, k=-3)$ would be the superfunction for $f(z) = $$3 - 2 z^2$$$, which is well outside the Mandelbrot set. mike3 Long Time Fellow Posts: 368 Threads: 44 Joined: Sep 2009 08/17/2010, 11:07 PM (This post was last modified: 08/17/2010, 11:09 PM by mike3.) (08/17/2010, 10:39 PM)tommy1729 Wrote: like i said mike , if you read my reply : i think he meant cn instead of nc. and i pointed out that a periodic function is not a superfunction in the direction of its period. regards tommy1729 (Oo, I just deleted that post, I didn't think someone would have gotten to it already... (Just for reference: the post was asking about what "nc" was since I hadn't seen it before, then I looked it up and saw it really does exist and that's why I deleted it)) Yeah, but $F(z) = \mathrm{cn}(2^z)$ is not periodic in the real axis direction due to the exponential (it does have an imaginary period of $\frac{2\pi i}{\log(2)}$ but not a real one) It's not straight $\mathrm{cn}$, but $\mathrm{cn}$ composed with an exponential. bo198214 Administrator Posts: 1,389 Threads: 90 Joined: Aug 2007 08/20/2010, 11:56 AM (08/17/2010, 05:39 AM)BenStandeven Wrote: From the double-angle formulas for the Jacobi elliptic functions we can get superfunctions to other rational functions. Actually this topic was already considered in: Schröder, E. (1871). Ueber iterirte Functionen. (On iterated functions.). Clebsch Ann., 3, 296–322. Personally interesting for me would be the iterates/superfunctions of rational functions that dont have a real fixed point. Are there some amongst this class obtained from elliptic addition theorems? In the case of several real fixed points there is still always the question at which fixpoint the obtained elementary iteration/superfunction is the regular iteration/superfunction. « Next Oldest | Next Newest »

 Possibly Related Threads... Thread Author Replies Views Last Post Superfunctions in continu sum equations tommy1729 0 2,226 01/03/2013, 12:02 AM Last Post: tommy1729 superfunctions of eta converge towards each other sheldonison 13 16,295 12/05/2012, 12:22 AM Last Post: sheldonison how many superfunctions? [was superfunctions of eta converge towards each other] tommy1729 8 9,654 05/31/2011, 07:38 PM Last Post: sheldonison elementary superfunctions bo198214 37 36,326 04/25/2010, 05:15 PM Last Post: bo198214

Users browsing this thread: 1 Guest(s)