Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Bivariate quasi-holomorphic function T(x,y) for complex x and y
(09/04/2010, 05:25 PM)Ciera_ΩMega Wrote: Consider a bivariate function T(x,y) for complex x and y that satisfies the following

① T(x,0) = 1 for x≠0 and abs(x)≠1
② T(x+1,y) = x^T(x,y)
③ For constant x, x≠0 and abs(x)≠1, T(x,y) is bounded on the strip with Re(y)∈[0,1) and Im(y)∈(-∞,∞)
④ For constant real y, y≥0, Re(x)=0 and Im(x)≠0, Re(T(x,y)) and T(x,y)/x are bounded
⑤ T(x,y) is a function of two complex variables holomorphic outside from singularities and branch cuts

Conditions ① and ② are basic conditions for tetration;
③ ensures that base-x tetrational cannot diverge for extreme values of Im(y), much as exp(y) is bounded for constant Re(y) and variable Im(y);
④ is derived from the fact that for Re(x)=0 and Im(y)=0, the iterated exponential of x as x→∞ⅈ and y→∞, approaches the 3-cycle {x, 0, 1}, which clearly has Re(T(x,y)) bounded and T(x,y)/x also bounded, and
⑤ ensures smoothness and analyticity of T(x,y) except on cuts and at singularities.

The idea for a function described above comes from the thread (tid=380) about base holomorphic tetration for fixed height, and (tid=377) which describes tetration of complex bases to complex heights. How about a bivariate function that is quasi-holomorphic on both base and height, much like how complex bases can be raised to complex powers with quasi-holomorphism on base and exponent?

What ideas can be made about uniqueness conditions for such a bivariate function?

I am a bit skeptical of condition 4, because I tried a construction once for a tetrational extension of such a "period" base, giving unbounded results at the real axis:

and a graph in the height plane (what you call "y"-plane) is given on page 2.

Note that the constructed function meets 1, 2, and 3, but not 4. Indeed, I'm not sure if we can have 4, without perhaps also losing 5.

Condition 3 reminds me of Kouznetsov. Also, if it can be made to hold, it would seem to suggest that for complex bases inside the "Shell-Thron region" (the region where the tetrational converges to a fixed point at real heights approaching real infinity), there is an alternate solution besides regular iteration that might be the better one (because the regular has singularities in that strip and so cannot be bounded there).

Messages In This Thread
RE: Bivariate quasi-holomorphic function T(x,y) for complex x and y - by mike3 - 09/08/2010, 05:20 AM

Possibly Related Threads...
Thread Author Replies Views Last Post
  Ueda - Extension of tetration to real and complex heights MphLee 2 375 12/03/2021, 01:23 AM
Last Post: JmsNxn
  A Holomorphic Function Asymptotic to Tetration JmsNxn 2 1,327 03/24/2021, 09:58 PM
Last Post: JmsNxn
  New mathematical object - hyperanalytic function arybnikov 4 6,508 01/02/2020, 01:38 AM
Last Post: arybnikov
  Complex Tetration, to base exp(1/e) Ember Edison 7 10,346 08/14/2019, 09:15 AM
Last Post: sheldonison
  Is there a function space for tetration? Chenjesu 0 2,311 06/23/2019, 08:24 PM
Last Post: Chenjesu
  Can we get the holomorphic super-root and super-logarithm function? Ember Edison 10 15,661 06/10/2019, 04:29 AM
Last Post: Ember Edison
  Degamma function Xorter 0 2,724 10/22/2018, 11:29 AM
Last Post: Xorter
  An explicit series for the tetration of a complex height Vladimir Reshetnikov 13 24,937 01/14/2017, 09:09 PM
Last Post: Vladimir Reshetnikov
  holomorphic binary operators over naturals; generalized hyper operators JmsNxn 15 28,924 08/22/2016, 12:19 AM
Last Post: JmsNxn
  Should tetration be a multivalued function? marraco 17 32,342 01/14/2016, 04:24 AM
Last Post: marraco

Users browsing this thread: 1 Guest(s)