• 0 Vote(s) - 0 Average
• 1
• 2
• 3
• 4
• 5
 Rational operators (a {t} b); a,b > e solved sheldonison Long Time Fellow Posts: 684 Threads: 24 Joined: Oct 2008 06/08/2011, 08:32 PM (This post was last modified: 06/08/2011, 08:57 PM by sheldonison.) (06/08/2011, 07:31 PM)JmsNxn Wrote: I can't believe I overlooked this! This is huge! .... therefore: $\vartheta(a, e, \sigma) = \exp_\eta^{\circ \sigma}(\exp_\eta^{\circ -\sigma}(a) + e)$ And therefore $\vartheta$ is potentially analytic, and isn't piecewise, for all a, and b = e, $\sigma \in (-\infty, 2]$ This is crazy.So we have a definition for t=0..2 (addition, multiplication, exponentiation), for all values of a. Nice! $a\{t\}e = \exp_\eta^{\circ t}(\exp_\eta^{\circ -t}(a)+e)$ So, now, I'm going to define the function f(b), which returns the base which has the fixed point of "b". $f(e)=\eta$, since e is the fixed point of b=$\eta$ $f(2)=\sqrt{2}$, since 2 is the lower fixed point of b=sqrt(2) $f(3)=1.442249570$, since 3 is the upper fixed point of this base $f(4)=\sqrt{2}$, since 4 is the upper fixed point of b=sqrt(2) $f(5)=1.379729661$, since 5 is the upper fixed point of this base I don't know how to calculate the base from the fixed point, but that's the function we need, and we would like the function to be analytic! This also explains why the approximation of using base eta pretty well, since the base we're going to use isn't going to be much smaller than eta, as b gets bigger or smaller than e. Now, we use this new function in place of eta, in James's equation. Here, f=f(b). $a\{t\}b = \exp_f^{\circ t}(\exp_f^{\circ-t}(a)+b)$ - Sheldon « Next Oldest | Next Newest »

 Messages In This Thread Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/06/2011, 02:45 AM RE: Rational operators (a {t} b); a,b > e solved - by sheldonison - 06/06/2011, 04:39 AM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/06/2011, 05:34 AM RE: Rational operators (a {t} b); a,b > e solved - by sheldonison - 06/06/2011, 06:02 AM RE: Rational operators (a {t} b); a,b > e solved - by sheldonison - 06/06/2011, 07:03 AM RE: Rational operators (a {t} b); a,b > e solved - by nuninho1980 - 06/06/2011, 05:16 PM RE: Rational operators (a {t} b); a,b > e solved - by bo198214 - 06/06/2011, 06:53 AM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/06/2011, 08:47 AM RE: Rational operators (a {t} b); a,b > e solved - by bo198214 - 06/06/2011, 09:23 AM RE: Rational operators (a {t} b); a,b > e solved - by tommy1729 - 06/06/2011, 11:59 AM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/06/2011, 05:44 PM RE: Rational operators (a {t} b); a,b > e solved - by bo198214 - 06/06/2011, 09:28 PM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/06/2011, 07:47 PM RE: Rational operators (a {t} b); a,b > e solved - by sheldonison - 06/06/2011, 08:43 PM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/07/2011, 02:45 AM RE: Rational operators (a {t} b); a,b > e solved - by bo198214 - 06/07/2011, 06:59 AM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/08/2011, 04:54 AM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/08/2011, 07:31 PM RE: Rational operators (a {t} b); a,b > e solved - by sheldonison - 06/08/2011, 08:32 PM RE: Rational operators (a {t} b); a,b > e solved - by bo198214 - 06/08/2011, 09:14 PM RE: Rational operators (a {t} b); a,b > e solved - by tommy1729 - 09/02/2016, 01:50 AM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/08/2011, 11:47 PM RE: Rational operators (a {t} b); a,b > e solved - by Gottfried - 06/11/2011, 02:33 PM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 06/12/2011, 07:55 PM RE: Rational operators (a {t} b); a,b > e solved - by Xorter - 08/21/2016, 06:56 PM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 08/22/2016, 12:36 AM RE: Rational operators (a {t} b); a,b > e solved - by Xorter - 08/24/2016, 07:24 PM RE: Rational operators (a {t} b); a,b > e solved - by Xorter - 08/29/2016, 02:06 PM RE: Rational operators (a {t} b); a,b > e solved - by JmsNxn - 09/01/2016, 06:47 PM RE: Rational operators (a {t} b); a,b > e solved - by tommy1729 - 09/02/2016, 02:04 AM RE: Rational operators (a {t} b); a,b > e solved - by tommy1729 - 09/02/2016, 02:11 AM

 Possibly Related Threads… Thread Author Replies Views Last Post The $$\varphi$$ method of semi operators, the first half of my research JmsNxn 7 181 Yesterday, 11:57 PM Last Post: JmsNxn The bounded analytic semiHyper-operators JmsNxn 4 7,433 Yesterday, 11:46 PM Last Post: JmsNxn Thoughts on hyper-operations of rational but non-integer orders? VSO 3 4,323 06/28/2022, 08:33 AM Last Post: Catullus Holomorphic semi operators, using the beta method JmsNxn 71 3,810 06/13/2022, 08:33 PM Last Post: JmsNxn [MSE-SOLVED] Subfunction is functorial!!!! MphLee 14 5,438 06/06/2021, 11:16 PM Last Post: JmsNxn Hyper operators in computability theory JmsNxn 5 10,556 02/15/2017, 10:07 PM Last Post: MphLee Recursive formula generating bounded hyper-operators JmsNxn 0 3,593 01/17/2017, 05:10 AM Last Post: JmsNxn holomorphic binary operators over naturals; generalized hyper operators JmsNxn 15 30,570 08/22/2016, 12:19 AM Last Post: JmsNxn Bounded Analytic Hyper operators JmsNxn 25 42,412 04/01/2015, 06:09 PM Last Post: MphLee Incredible reduction for Hyper operators JmsNxn 0 4,172 02/13/2014, 06:20 PM Last Post: JmsNxn

Users browsing this thread: 1 Guest(s)